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Abstract 

Ac(2 is a highly concurrent programming language designed to exploit the 
processing power available from parallel computer architectures.  The language 
supports advanced concepts in software engineering, providing high-level constructs 
suitable for implementing artificially-intelligent applications. Act2 is based on the 
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Preface: A Guide to this Document 

The organization of this document was part of an attempt to satisfy a variety of 

audiences. When possible, essential information is encapsulated in a convenient 

location, to be studied or ignored as a whole. The main body of the document 

describes the historical setting in which Act2 materialized, the creation process, and 

a rationale for its design. The appendices generally describe the language itself, and 

serve as reference material. 

Chapter One describes the context in which Act2 was built, including the 

foundation of previous work upon which it stands. Chapter Two is an 

impressionistic introduction to the language itself, making use use of canonical 

examples. At this point, interested readers may browse through the appendices in 

order to become more familiar with the language before pushing on. The following 

chapters assume a familiarity with the language and a willingness to refer to 

appendices for details of the language's syntax and semantics. Chapter Three relates 

the design and development strategies used to produce Act2. Chapter Four 

discusses issues considered important in Act2's design. It is the backbone of the 

document's body. Chapter Five touches on implementation issues and mechanisms, 

and Chapter Six wraps up w ith a summary and conclusions. 

Appendix A contains a glossary for help in decoding actor jargon. Appendix 

B presents a sample of conversational interaction with Acl2. Appendix C informally 

describes the syntax and semantics of Act2, construct by construct. Appendix D is a 

more formal description of the language, in the form of an Act2 implementation of 

itself. It is useful for resolving ambiguities in the natural language descriptions of 

Act2, and for understanding the general strategics used in its implementation. 

Mann — 
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Appendix h describes pre-defined names and actors which come with an installation 

of Act2, as well as some standard communication protocols which they use. 

Appendix F discusses a few more language issues considered too distracting or 

unimportant for Chapter Four. 
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Chapter One 

Conceptual Framework 

The recent history of Computer Science shows significant advances in 

computer software and hardware engineering. Increasingly sophisticated and 

complex software application systems are being designed and implemented, 

especially in the area of Artificial Intelligence. Requirements for software have 

grown to include open systems, in which autonomously owned and independently 

conceived software systems communicate and cooperate. Modern programming 

languages may exploit the increased parallelism afforded by hardware and support 

the software engineering principles and practices for reduction of complexity in 

designing and implementing software systems. 

These trends were anticipated by [Hewitt 77, Hewitt and Smith 75], which 

proposed a novel computational model, based on virtual computational agents 

called actors. The actor model was abstraction-oriented, processor-independent, 

and inherently concurrent. Languages realizing this model are intended to exploit 

parallelism available in future computer architectures. 

The first actor language, Plasma, was essentially an experiment to determine 

whether it was possible to construct a language based on the actor model of 

computation. Though Plasma was a useful language in itself, its design and 

implementation pointed out the fact that more needed to be learned about actor- 

based languages with advanced features suitable for Artificial Intelligence 

applications. It also pointed out that trying to solve the whole problem at once was 

not a practical approach; that it may be more wieldy to decouple some of the issues 

13 

-" - i Hi immmv^^m{ ^••HkMM. 



L 

and mechanisms bv, experimenting with different aspects of the problem mare 

independently. 

The Actl programming language [Lieberman 81a] was a direct realization of 

the actor computational model, ft was an experiment in the use of actors and in 

expressing their behavior and communication among them. The Omega description 

and deduction system [Barber 82, Hewitt, Attardi, Simi 80] was an experiment in 

knowledge representation and manipulation mechanisms useful for languages 

implementing artificial intelligence applications. Ether [Kornfeld 79] was a 

reasoning system for solving problems in much the same way they are solved by 

scientific communities. It dealt with the creation and management of independent 

problem solvers cooperating to establish or refute common goals. ApiaryO [Hewitt 

80] was a design for a computer architecture consisting of a large number of 

independent processors interconnected with high-bandwidth links. The computer 

architecture itself was responsible for services such as storage management, 

transmission of communications, migration of actors, and load-balancing. 

Languages built of top of an Apiary can ignore such issues. 

Many new ideas and insights were acquired in the design and development of 

each of these experimental systems. Now that they have been completed, the time 

has come to integrate these ideas and others developed independently into a single, 

more sophisticated programming language: Prelude. 

The Act2 programming language is the first step in implementing Prelude. It 

blends basic ideas, mechanisms, and philosophies from Actl, Omega, and Ether in a 

single programming language. They arc not simply juxtaposed, but permeate the 

language through to its foundation. Act2 itself does not fully implement the more 

sophisticated aspects of Omega and Ether, but is extensible in a manner such that 

the rest of Prelude can be embedded within it. 

14 
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Our implementation of Act2 runs on Lisp Machines [Wcinreb and Moon 81]. 

It is written in Scripter [Lieberman 83], a language embedded in Lisp Machine Lisp, 

tailored for expressing actor computations. 

1.1 The Actor Model of Computation 

Early computational models were significantly more machine-oriented than 

the actor model. Early languages implicitly had a model in which computation 

progressed as a succession of modifications to a global machine state. Both the 

existence of a set of fixed-size storage locations and a set of machine instructions 

showed through to the language level. Data structures were mapped onto sets of 

contiguous storage locations. Procedures were developed to encapsulate a series of 

primitive operations, procedure calls, and state changes as a single abstract 

operation. Object-oriented languages abstracted away the structure of the store. An 

object consisted of some storage and primitive operations with which to access and 

manipulate this concrete representation. Though encapsulating the representation 

of data types was a tremendous advancement, the underlying computational 

paradigm was still that of sequentially modifying a global state. Advancements in 

hardware technology have provided increasing amounts of parallelism for 

programming languages to exploit. Languages based on the old computational 

models arc inherently sequential, and need special attention to exploit parallelism. 

1.1.1 Actors 

The actor model of computation [Hewitt and Baker 78] is one in which many 

active, self-contained computing entities, called actors, process communications in 

parallel. Each actor has its own processing power and storage. Instead of having a 

notion of control flow, the actor model makes use of a more flexible idea of 

15 
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cooperation; of* communication among entities which are under their own control. 

Acini's interact by transmitting information in communications to each other. 

An actor is a mathematical abstraction [Clinger 81a]. It is self-contained and 

opaque in the sense that its internal composition cannot be directly seen or 

manipulated by other actors. They are restricted to sending communications to the 

actor and observing whatever communications the actor might send in reply. Only 

the actor itself can access its underlying representation. It also is responsible for 

how it reacts to any communication; it may even choose to request authentication, 

request additional computing resources, or reject the communication altogether. An 

actor is an encapsulation mechanism providing information-hiding capabilities, 

which are a corner stone of good software engineering. 

Each actor has a script, which determines what communications it can accept 

and what computations it will perform upon receiving each. It may also have some 

acquaintances, which are other actors it can directly communicate with as it 

processes a communication. An actor's behavior is uniquely characterized by its 

script and acquaintances. When it accepts a communication, an actor can make 

simple decisions, create new actors, send communications to its acquaintances (or to 

itself), and designate an actor to serve as a replacement for itself. 

One of the effects an actor can cause is the replacement of itself by another 

actor. It becomes indistinguishable from the replacement actor, which processes any 

future communications for the actor. Serialized actors, or serializers, are actors 

which may change. Unserialized actors are actors whose behavior includes no 

provision for change. The distinction is a very important one. Because a serializer 

may change as a result of processing a communication, it can only process one 

communication at a time. For this reason, the order of arrival of communications is 

important for serializers. 

16 
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Unserializcd actors, on the other hand, can change neither their behavior nor 

their acquaintances, and as a result can process communications concurrently. 

Arrival ordering does not matter, because behavior does not change. Unserialized 

actors can also be copied arbitrarily, because lack of change will make the copies 

indistinguishable. 

1.1.2 Transactions 

Communications are also actors. There are three kinds of communications, 

representing the major forms of communication in transactions among actors. Each 

communication has a message acquaintance containing information for the target 

actor. An actor can send a request communication to another, asking it to cause 

effects or provide information of some form. After the request has been successfully 

fulfilled, some actor will eventually respond to the request with a 

reply communication. Otherwise, the response is a complaint communication 

containing a message, which says why the request could not be successfully 

processed. We refer to replies and complaints collectively as responses. 

Transmission of communications is one-way, asynchronous, and buffered. 

Concurrent activities can be spawned simply by transmitting more than one 

communication when processing a communication. The sender does not wait for 

the receiver (or target) to be ready to receive a communication; instead, the 

communication is enqueued for reception by the receiver. If the receiver is 

serialized, arrival order is preserved in a first-in, first-out queue. The sender of a 

request does not wait for a response from the receiver, because all communication is 

one-way. Instead, the sender includes in the request a customer, an actor to which a 

reply can be sent. It also includes a complaint department, to which a complaint can 

be sent, in the event that the request cannot be satisfied. When an actor sends a 

request to another actor, it includes in the request a customer and complaint 

17 
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department, which arc responsible tor completing the computation. While this 

computation continues, the actor might begin processing another communication. 

See [Kerns 8U] for a rigorous definition of transactions. 

Computation is event-driven. An event happens when an actor accepts a 

communication for processing. An actor only consumes computing resources when 

it processes a communication. An event is machine-independent, because all of the 

information necessary to process it is present in the incoming communication and 

target actor — its behavior and acquaintances. A transaction begins by sending a 

request to some actor, which might send communications to other actors. 

Eventually, an actor might reply to the original customer or complain to the original 

complaint department. 

Because of its emphasis on communication, the actor model of computation 

unifies the ideas of procedural, data, and control abstraction developed by languages 

using other models. For example, a data abstraction, such as a checking-account, 

can be embodied in an actor with an acquaintance that serves as a current balance 

and with a behavior that responds appropriately to requests for deposits, 

withdrawals, and balances. A procedural abstraction, such as factorial, can be 

embodied in an unserialized actor which accepts a request containing an integer, 

performs a computation (possibly asking itself for the factorial of other integers), 

then replies with the result. Control abstractions such as recursion, iteration, back- 

tracking, tree traversal, etc. can be embodied in actors which send each other 

appropriate communications. 

18 
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1.2 Plasma 

Plasma was the first actor language. As the first language design endeavor 

using the actor model of computation, it made some progress in implementing and 

developing the model. At that time, the actor model was in its infancy, and 

advancements have since been made, thanks to experiments such as Plasma and 

Actl. 

Plasma had basic facilities for transmitting communications, but did not 

formally distinguish requests, replies, and complaints as different kinds of 

communications. It incorporated the ideas of expressing control structures as 

patterns of message-passing, and of unifying the notions of data structures and 

procedures by concentrating on communication. The language had simple data 

structures such as numbers and simple constructors like sequences and packagers. 

Packagers were similar to record structures in languages such as Pascal, allowing the 

encapsulation of a set of labeled actors, but lacked the flexibility and power of 

instance descriptions developed in Omega. ITiough Plasma did acknowledge the 

need for change, the idea of serializers had not yet been conceived and formalized. 

1.3 Actl 

Actl was a programming language which directly realized the actor model of 

computation [Licberman 81a, I.ieberman 81b]. It was implemented in Maclisp for 

PDP10, as an experiment in implementing an actor language which uses the 

message-passing paradigm down to the level of primitive actors, such as numbers 

and lists. It helped formalize common patterns of message-passing and useful types 

of communications, as well as the notion of change in actors. As an experimental 

language, it was unencumbered with mechanisms such as those in Omega and Fther. 

which provide sophisticated services for the programmer. It provided mechanisms 
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for creation of actors and for point-to-point communication between actors. It 

allowed an actor to delegate its incoming communications to another actor for 

handling. 

Actl allowed a programmer to write programs which appeared to have two- 

way communication between actors, and translated such expressions into requests 

with appropriate customers and complaint departments. 

Actl provided constructs for sending arbitrary communications to actors. It 

also provided constructs for actors to change their behavior, and provided explicit 

synchronization primitives to avoid problems of change. Actl also provided a 

notion of a guardian, an actor which could accept requests, store away state 

information, then reply to their customers at some later time. 

Sub-expressions in Actl were evaluated sequentially. However, Actl 

provided the following constructs for lazy and eager evaluation of expressions: 

(delay expression) 
(hurry expression) 

When evaluated, the hurry expression would create and reply with a future, 

which was an actor representing the value of the expression inside the hurry 

expression. A newly-spawned process would evaluate that expression concurrently 

with whatever activity occurred once the future was returned. If die future ever 

became inaccessible, the process computing the expression's value could be garbage- 

collected. If any communications were sent to the future actor, it would enqueue 

them, then send them to the result of the expression, once its evaluation terminated. 

In addition, Actl had the notion of a race for concurrent activity. Given a list 

of expressions to be evaluated, a result list was immediately provided. As results 

became available, they were appended to the list asynchronously. An actor with 
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such a race in ils possession could appl> the standard fust and resi operations on it. 

Synchronization was done by the race, so that if results were not yet available, it 

would wait for them before responding. If the race became inaccessible, it along 

with the processes still computing for it would be garbage-collected. 

Actl had primitive actors, such as numbers and symbols. It also had 

constructors, like sequences. It had a form of constructor, called a package, which 

resembled Plasma packagers and behaved in essentially the same manner. Pattern- 

matching was performed as a structural correspondence between the pattern and 

object of the match. 

1.4 Omega 

Omega [Hewitt, Attardi, Simi 80, Attardi, Simi 81, Barber 82]is a system for 

representing knowledge in general, reasoning about knowledge, and retrieving 

information from a knowledge base. It represents knowledge as 

descriptions representing abstract concepts and individuals, and as relationships 

among those descriptions. 

The simplest form of Omega description is an atomic description, such as 

real-number, complex-number, 12, man, animal, or Jack. These represent abstract 

concepts or individuals in a model of some world. 

An instance description represents some collection of individuals which are 

instances of some abstract concept. It can also be thought of as representing any 

individual in such a collection. Examples of simple instance descriptions include: 
(a real-number) 
(a complex-number) 
(a man) 
(an animal) 
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The collection of individuals represented by un instance description can be 

restricted by describing attributes which they possess. ITie order in which attributes 

appear in an instance description is irrelevant. 
(a man  (with mother  Jill)) 
(a man  (with mother  (a woman))   (with father  (a man))) 
(a man (with mother  (a woman  (with  father Bill)))) 

One fundamental mechanism for knowledge representation is the assertion of 

an inheritance relationship between two descriptions. This represents a relationship 

between the collections of individuals the descriptions represent. The statement 

(Dl 1s D2) represents the idea that anything described by the description Dl is also 

described by the description D2. This also means that Dl is a specialization of D2; 

tliat D2 is a generalization of Dl. Any knowledge associated with D2 is inherited by 

Dl. 

(Jack 1s (a man)) 
(man 1s (a species)) 
((a man) 1s (a mammal)) 
(12 1s (a real-number)) 
((a real-number) 1s (a complex-number)) 
((a real-number) 1s (a complex-number (with Imaginary-part 0))) 

Omega implements an omega order logic for making deductions about 

generalizations and specializations. Omega uses several axioms for reasoning about 

descriptions and the inheritance relationships between them. For example, there is 

an axiom establishing the commutativity of attributes, so that it doesn't matter in 

what order they are included in the instance description. There is an axiom 

establishing the transitivity of the inheritance relation. There are axioms for dealing 

with conjunctions and disjunctions of descriptions, and for relating them to single 

descriptions. In addition to the with attributes above, there are different kinds of 

attributes, to which more or fewer axioms can be applied. 

For example, the relationship (Jack 1s (a mammal)) can be deduced from 

the relationships (Jack 1s (a man)) and ((a man) 1s (a mammal)) by the 
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transitiv it\ axiom. Vcrj significant amounts of knowledge can he embedded in a 

lattice formed by descriptions and inheritance relationships between them. 

A description lattice is required to be monotonic. All descriptions are 

unchanging, all inheritance relationships are assumed to hold forever once asserted, 

and knowledge can be added but nc\cr altered or removed. Revision of beliefs, 

opposing sets of beliefs, and suppositions can be represented using a viewpoint 

mechanism. Omega assertions are commutative — the same deductions can be 

made, no matter what order the inheritance relationships are asserted. 

Omega supports partial description of abstract ideas, and incremental 

specialization of those descriptions with others. Knowledge about the characteristics 

of an abstract concept or object and its relationship to other concepts can be 

embedded in an incomplete fashion, and new pieces of knowledge can be added 

incrementally. Later, we can retrieve and use not only die particular information 

asserted, but combinations thereof and deductions made from them using sets of 

assertions made in the knowledge base and sets of axioms for relating them to each 

other. 

1.5 Ether 

Ether is a highly concurrent problem solving system based on a metaphor of 

problem-solving in a scientific community [Kornfeld 79, Kornfeld, Hewitt 

81, Kornfeld 82]. In this model, many independent problem solvers (called sprjes) 

can exist in a community. Each sprite specifies a computation to be performed if 

some specific goal or hypothesis is presented to the community ft r comment. 

Sprites can either work to prove or disprove a goal. Such a computation can post 

new goals or hypotheses. One of the fundamental concepts is dissemination of 
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informalion to all sprites which have an interest in it. 

Kther has a resource management scheme which associates a sponsor with each 

goal. The sponsor provides computing resources for those working to prove or 

disprove the goal. Sprite must request some of these resources, which are used as its 

computation proceeds. 

Ether contains commands for disseminating goals and hypotheses. For 

example, assuming we had primitives for description and inheritance like those in 

Omega, we might represent the fact that some pattern patternO matched some 

object objectO with a predicate: (pattern-matches patternO objectO). 

We might disseminate this as a goal: 

(disseminate (goal  (pattern-matches patternO objectO))). 

Some sprite we create then activate may eventually prove this, then 

disseminate it as a hypothesis: 

(disseminate (hypothesis (pattern-matches patternO objectO))). 

Alternatively, some sprite may disprove it, in which case it may disseminate its 

negation: 

(disseminate (hypothesis  (not (pattern-matches patternO objectO)))). 

We can create and activate a trivial sprite with an expression such as: 
(disseminate 

(when (goal (pattern-matches ap *o)) 
(1f (eq p o) 
then (disseminate (hypothesis (pattern-matches p o))))) 

Other sprites might try to prove or disprove this goal in other ways. For 

example, if the pattern and object are instance descriptions, one sprite might try to 

establish a simple correspondence between the concepts and attributes. Another 
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might traverse an Omega lattice, trying to find a mure elaborate way of matching the 

pattern and object. Other sprites might be responsible for applying Omega axioms 

to descriptions and inheritance relations. Note that Ether itself knows nothing 

about instance descriptions. Omega lattices, inheritance relationships, or deduction 

axioms. These ore assumed to be accessible via some operations independent of 

Ether itself. 

Often, a sprite trying to establish a goal will disseminate sub-goals, then 

disseminate a hypothesis once the sub-goals have been established, lürge numbers 

of hypotheses may be disseminated as a result. Because these have been 

disseminated, they can be used in establishing other goals, without being re- 

established. Because Ether is monotonic, diese hypotheses are never forgotten. An 

interesting phenomenon results, called combinational implosion, like the gains 

obtained from dynamic programming techniques. 

Ether allows programmers to explicitly mention sponsors and viewpoints. For 

example, a goal can be sponsored by some specified sponsor or with respect to some 

specified viewpoint: 
(disseminate 

(goal (pattern-matches patternO objectO) 
(with sponsor sponsorO) 
(with viewpoint vlewpolntO)) 

(disseminate 
(when (goal (pattern-matches »p *o) 

(with sponsor •$) 
(with viewpoint «v)) 

...)) 

Constructs exist for establishment of sophisticated resource management 

policies and for establishing relationships among viewpoints. One command for 

resource management simply makes a sponsor refuse to provide resources to sprites 

requesting them. This is useful for staving off alternative proofs of a goal once the 

goal has been established or disproved. For example, if the goal above had really 
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been disseminated, and a sprite had just established it. the sprue could choke off 

related computation by other sprites with the command: 
(withhold sponsorO 

(with reason  (established (pattern-matches patternO objectO)))) 

F.ther supports pluralism. Conflicting hypotheses can exist freely in different 

viewpoints. Sprites can try to establish the same goal with different approaches. 

Some sprites can try to establish a goal while other sprites can try to refute it. Ether 

relies on monotonicity. It assumes tbat any hypotheses once disseminated will 

remain available and unchanged for all time thereafter. Ether supports 

commutativity. Goals and hypotheses disseminated after the activation of a sprite 

will be made available to the sprite and processed as appropriate. Likewise, sprites 

activated after the dissemination of goals and hypotheses will be available for the 

sprite. Ether has much potential for parallelism. The very notion of sprites is as 

problem solvers which compute independently, and therefore concurrently. The 

monotonicity criterion avoids synchronization problems. The unit of concurrency is 

the sprite, and not the commands or expressions which appear within its body. The 

implementation of Ether was done in Lisp and is very lisp-oriented. This is not 

inherent in Ether, but is an artifact of its implementation. 

1.6 ApiaryO 

ApiaryO was a design and preliminary implementation of a computer 

architecture for supporting actor languages [Hewitt 80]. It supports a model of 

hardware as a large number of physically small processors, each with its own 

memory, connected by a network of high bandwidth links. Each processor (or 

worker) is independent of the rest, but they cooperate by sending messages to each 

other over the network. 
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I he Apiary architecture is responsible for providing storage management 

services. It allocates space for newly-created actors. It also garbage-collects 

inaccessible actors. A fast, real-time garbage collection algorithm [l.ieberman and 

Hewitt 83] is used for actors existing locally in the worker's memory. A more 

complex garbage-collection algorithm involving cooperation among workers is used 

in non-local garbage collection. This algorithm also tries to group related actors 

onto the same worker, to provide locality of reference, and minimize 

communications across workers. 

The Apiary architecture is responsible for providing computing power for 

actors. Because it must provide computing power for all actors in its memory, it 

maintains a queue of tasks. Each task consists of an actor and a communication for 

it to accept. It dequeues a task and processes it, enqueueing any new tasks which 

this processing causes. 

The Apiary performs reliable transmission of communications to target actors. 

If the target is on the same worker as the sender, the transmission is fast and trivial, 

involving only local memory operations. If the target is not on the same worker as 

the sender, then the worker must communicate with at least one of its neighboring 

workers, to get the communication on its way to the target. The communication 

transmission might involve more of this kind activity, depending on how far away 

the target is, and what forwarding information each worker has. Routing of 

communications is done dynamically by workers. 

The architecture is also responsible for migrating actors and performing load- 

balancing. Actors can be moved from worker to worker. This is easy for 

unserialized actors, because they can be copied arbitrarily. Moving serialized actors 

requires extra synchronization. When a worker's pending task queue is significantly 

longer than one of its neighbor's queues, the worker can migrate some of the tasks to 
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its neighbors In tins process of load-balancing, actors arc chosen lor migration in a 

fashion that attempts to preserve locality of reference as much as possible, to 

minimize message-passing across workers. 

The Apiary must also be able to deal with physical problems, such as the 

failure of communication channels or workers. 

1.7 Integration 

Actl, Omega, Ether, and ApiaryO were experiments dealing with different 

aspects of the design of a high-level actor-based language system. Work progressed 

on each, and independent implementations were developed, not all of which were 

actor-based. An actor language currently being designed is intended to blend the 

functionality and use the mechanisms of Actl, Omega, and Ether. This language, 

Prelude is expected to run on a computer architecture such as the Apiary, which 

provide parallel computation facilities, as well as services such as storage 

management, migration, and transmission of communications. 

As an actor language. Prelude will have at least the functionality of Actl. The 

specific constructs with which it provides that functionality, however, will be 

oriented more toward the intended usage and flavor of the language. In addition, 

Prelude will use instance descriptions as information containers and as types. It will 

use pattern-matching for information extraction, for type-checking, and for 

recognition of communications. It will also use sponsors for resource management. 

Pattern-matching with deduction can make use of sprites working together 

concurrently to establish or deny a relationship between a pattern and the object 

being matched. 

Actl, Omega, and Ether were implemented independently. Each was molded 
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to deal with specific and well-chosen issues and ideas, and to a large extent ignored 

the issues dealt with by the others. As a result, their designs and implementations 

are incompatible. All three are very closely tied to the Lisp language in which they 

were implemented. 

liiere are also conflicts in their underlying philosophies. Omega and Ether 

assume monotonicity, and assume that nothing they deal with will ever change. 

Because of this, they can support parallelism, with no need for synchronization. 

They can also assume that once something is shown to be true (or false), it will 

remain that way forever. On the other hand, Act2 has serializes, which can alter 

their behavior. 

In addition, syntactic conflicts arise when attempts are made to integrate the 

constructs from each with minimal change. 

The task of implementing Prelude is factored into the implementation of a few 

layers. The Lisp language provides an interface to the raw hardware used in the 

implementation of an Apiary. A language called Scripter which is embedded in 

Lisp provides an interface to the Apiary architecture, as well as convenient 

expression of low-level message-passing computations. Aci2 is an actor language 

implemented in Scripter which integrates the basic mechanisms from Actl, Omega, 

and Ether, in an extensible fashion. Prelude can be embedded in Act2 with a set of 

syntactic and semantic extensions written in Act2, by providing the more 

sophisticated services from Omega and Ether. 
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Chapter I wo 

Introductory Examples 

The following chapters — especially Chapters Four and Five     assume a 

familiarity with the Act2 language. This chapter serves as a verj brief introduction 

to the language, by way of illustrative examples. This chapter is merely intended to 

provide impressions of the language, its constructs and their use. It is not intended 

to provide a full understanding of the language. Such descriptions have been 

encapsulated in appendices, for use as reference material. For those who are 

interested in a deeper understanding of the syntax and semantics of Act2, we 

recommend browsing through one or more of: 
an Act2 tutorial {section B, page 119}, 
an informal language description {section C, page 124}, 
or a detailed meta-circular description of Act2 {section D, page 163}. 

The choice of appendices should be based on degree of familiarity with Acl2 or with 

previous actor language designs, and on the depth of understanding desired. 

2.1 A Simple Recursive Factorial Actor 

Our first example is a standard recursive implementation of factorial. The 

factorial of any integer n larger than 0 is the product of n and the factorial of n - l. 

nie factorial of 0 is 1. Factorial is only defined over the domain of whole numbers. 

Our recursive implementation of factorial will be a direct realization of the 

above description. We will establish a definition of a factorial abstraction, so we can 

then obtain the factorial of a number such as 3 with an expression of the form, 

(new factorial  (with number 3)). 

30 

j- •   
. 



r 
A factorial abstraction can be defined uiih an expression -.ml) as the one 

below, entered as input to an Act2 listen loop. 
(define (new factorial 

(with number (=n wh1ch-1s (a whole-number)))) 
(1f  (- n 0) 

(then do (reply 1)) 
(else do (reply (• n  (new factorial  (with number (- n  1)))))))) 

Hie define expression includes a template describing a particular form of new 

expressions. That is, the template 

(new factorial  (with number (=n wh1ch-1s (a whole-number)))) 

characterizes all new expressions like (new factorial (with number 3000)), 

which have a concept which evaluates to the factorial concept, and which has a 

number attribute whose filler is a whole-number. 

The define expression also includes an expression which denotes the meaning 

of new expressions described by the template. This expression is evaluated in the 

environment in which the define expression itself was evaluated, extended with any 

bindings occurring in the template. For example, when an expression such as 

(new factorial  (with number (+ 2000 1000))) is asked to evaluate itself in 

some environment, it looks up the concept factorial in the environment. 

Next, it asks the pattern 

(a factorial  (with number ( = n wh1ch-1s (a whole-number)))), which was 

installed by the define expression above, to match an instance description of the 

form (a factorial (with number 3000)). This results in a successful match, 

binding n to 3000. The definition environment installed by the define is extended 

with this binding, producing a new environment. If die match had failed, a 

complaint would have been sent immediately as the response to the new expression's 

evaluation request. 

Finally, the expression installed by the define, 
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(if (- n 0) 
(then do (reply 1)) 
(else do (reply (• n (new factorial (with number (- n 1))))))) 

is asked to evaluate itself in this extended environment Its response to the 

evaluation request is sent as the response for the evaluation of the new expression 

itself. 

When this expression is asked to evaluate itself, it discovers that 3000, which is 

bound to n, and 0 do not believe they are equal. In response to the evaluation 

request, it replies with the product of 3000 and the result of 

(new factorial  (with number 2999)). 

2.2 A More Concurrent Factorial Actor 

In the naive implementation of factorial above, the history of multiplications 

in obtaining the factorial of 3000 had the form, 

(3000 • (2999 • (... • (3 • (2 • (l * l)))...))). All multiplications had 

to be performed sequentially, because of the algorithm chosen as the 

implementation for factorial. 

A highly concurrent implementation might view the factorial of 3000 as a 

product of the integers in the range from 1 through 3000. The algorithm for 

computing this range product might divide the problem into the product of the 

range product from 1 through 1500 and the range product from 1501 through 3000. 

These subproblems are independent, and can be computed concurrently. 

Moreover, they can be computed in the same manner, spawning even more 

concurrent activity. Thus, a large number of the multiplications involved in 

computing the factorial of 3000 could be done concurrently. 

Our implementation of factorial can check for the special case of the factorial 
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of U, and can make use of a subsidiary range-product abstraction for integers larger 

than 0. Here is the revised implementation of factorial. 
(define (new factorial 

(with number ( = n wh1ch-1s  (a whole-number)))) 
(1f  («  n 0) 

(then  do (reply 1)) 
(else do (reply (new range-product 

(with  low 1) 
(with high n)))))) 

The implementation of the range-product abstraction has special cases, where 

the lower bound is larger than and where the lower bound is equal to the higher 

bound. Here is its implementation: 
(define (new range-product 

(with low (=lo wh1ch-1s (a natural-number))) 
(with high (=h1 wh1ch-1s (a natural-number)))) 

(one-of 
(1f (- lo hi) do (reply lo)) 
(1f (> lo hi) do (reply 1)) 
(if (< lo hi) do 

(let ((=m1d match (floor (+ (+ lo hi) 2)))) do 
(reply (* (new range-product 

(with low 1) 
(with high mid)) 

(new range-product 
(with low (+ mid 1)) 
(with high hi)))))))) 

Notice that Act2 expressions such as the multiplication expression, *, are 

defined to evaluate their arguments concurrently. This is a major source of 

concurrency in performing range products using this algorithm. Notice also that the 

if branches of the one-of expression are tried concurrently. That is, the boolean 

expressions within them are evaluated concurrently, and the first one (temporally) 

which is noticed to reply with a true value is chosen. The body of the chosen branch 

is then evaluated. 

33 

«WUMUkMKOli 



2.3 A Simple Hank Account Actor 

So far, we have seen actors which behave like mathematical functions, 

performing factorials and range products. These are typical of the programming 

Style espoused by applicative programming aficionados. We can implement other 

kinds of actors using the same abstraction mechanism. For example, we can define 

a simple account actor, which can represent bank accounts. Our code will be 

typical of an object-oriented programming style, made popular by Smalltalk [Ingalls 

78]. We can establish a suitable meaning for expressions of the form 

(new account (with balance 3000)), so their evaluation results in the creation of 

new account actors with the specified balance. 

Here is an example of an implementation of such an account abstraction: 
(define (new account 

(with balance =b)) 
(create 
(1s-request (a balance) do (reply (a balance))) 
(1s-request (a deposit (with amount  a)) do 

(become (new account  (with balance  (+ b a)))) 
(reply (a deposit-receipt (with amount a)))) 

(is-request (a withdrawal (with amount  a)) do 
(let ((snew-balance match (- b a))) do 

(1f (> new-balance 0) 
(then do 

(become (new account (with balance new-balance))) 
(reply (a withdrawal-receipt (with amount a)))) 

(else do 
(complain (an overdraft)))))))) 

When an expression of the form (new account (with balance 3000)) is 

asked to evaluate itself, it behaves in much the same way as 

(new factorial (with number 3000)). The difference is that the expression 

which gets evaluated is a create expression, which represents the creation of an actor 

whose behavior is described by the communication handlers in the create expression. 

These communication handlers classify the communications which the actor can 

accept for processing, and describe what the actor will do to process each 
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communication. For example, the first communication handler is for requests 

containing a message which match (a balance).  ITie actor replies to such a request 

with a reply containing the current balance as its message. 

The second communication handler is for requests containing deposits. When 

such a request is received, the account concurrently replaces itself with a new 

account with an appropriately increased balanced, and replies with a deposit receipt 

for the deposited amount. 

The third communication handler is for requests containing withdrawals. 

When such a request is received, the account must first check for an attempt to 

withdraw more than the current balance. If this happens, then it complains with an 

overdraft and does not alter its behavior. If the amount is a valid one, the account 

concurrently replaces its behavior with an appropriately decreased balance, and 

replies with a receipt for the withdrawal. 

Notice that the become and reply commands are evaluated concurrent)) in the 

environment in which the actor was created, extended with the bindings of local 

variables in the communication handlers and enclosing commands. Note also that 

when the account receives a communication, the communication handlers attempt 

to match it concurrently. 

2.4 A New Control Abstraction 

As a final example, we will define abstract syntax for an expression with which 

we could extend the language. On the surface, this expression might look like 

(first-response expl cxp2). We would like the evaluation of this expression to 

respond with the first response it gets when it concurrently asks the two expressions 

to evaluate themselves. As soon as it relays the first response, it should stop 
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sponsoring the second computation and should discard the second response. 

Our implementation of the f irst-response-expression abstract syntax actor 

will make use of two subsidiary abstractions, an initial-sponsor and a 

subsequent-sponsor.  ITie strategy is to collect all relevant information present in 

the expresslon-eval request, including the message, customer, complaint- 

department and sponsor. We create an Initial-sponsor actor using the original 

customer, complaint-department and sponsor. We then send both sub-expressions a 

request containing the original expresslon-eval message, but designate the 

initial-sponsor actor we just created as the customer, complaint-department and 

sponsor. 
(define (new f1rst-response-express1on 

(with express1on-l = expl) 
(with expresslon-2 =exp2)) 

(create-unserialized 
(1s-commun1cat1on 
(a request 

(with message (=or1g1nal-message wh1ch-1s (an expresslon-eval))) 
(with customer ^original-customer) 
(with complaint-department sor1g1nal-compla1nt-department) 
(with sponsor =orig1nal-sponsor)) 

do 
(let (( = 1s match 

(new 1n1t1al-sponsor 
(with customer original-customer) 
(with complaint-department 

original-complaint-department) 
(with sponsor original-sponsor)))) 

do 
(let ((=new-express1on-eva1 match 

(new request 
(with message original-message) 
(with customer 1s) 
(with complaint-department 1s) 
(with sponsor 1s)))) 

do 
(send-to expl new-express1on-eval) 
(send-to exp2 new expresslon-eval )))))) 

The Initial-sponsor actor is a scrializer which serves as a sponsor for the 

evaluation of the two sub-expressions, as a customer for collecting replies, and as a 
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complaint-department for collecting complaints. As a sponsor, it should rclaj any 

requests for more resources to the original sponsor. As a customer and complaint 

department, it should relay the first response to the original customer or complaint 

department, as appropriate. As it does this, it should also become a 

subsequent-sponsor actor, which will refuse to giant more resources and will 

discard any other response. 
(define  (new  Initial-sponsor 

(with customer =c) 
(wHh complaint-department = cd) 
(with sponsor =s)) 

(create 
(1s-request  (^message wh1ch-1s   (a resource-request))   do 

(reply  (ask s message))) 
(1s-reply  =message do 

(reply-to c message) 
(become  (new subsequent-sponsor))) 

(is-complaint   -message  do 
(compla1n-to cd message) 
(become  (new subsequent-sponsor))))) 

The implementation of the subsequent-sponsor abstraction is quite simple. 

It complains when asked for more resources, and does nothing in response to any 

replies or complaints it receives. 
(define (new subsequent-sponsor) 
(create-unser1al1zed 
(1s-request (a resource-request) do 

(complain (a no-resources-ava1lable))) 
(1s-reply something do ) 
(1s-compla1nt something do ))) 
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Chapter Three 

The History of Act2 

One pail of this thesis work has been work on the design of Act2. The design 

effort consisted of taking the preliminary design for Prelude itself as documented in 

[Theriault 82], analyzing it with respect to our design goals, self-consistency, 

uniformity, and implementability, and making modifications as necessary. Some 

changes were made less to the syntax of constructs than to their semantics. The 

design of Act2 involved evaluating the preliminary, documented design, checking 

for consistency, synergy, simplicity; evaluating them in terms of new design goals 

and principles; deciding what could be factored out into a base language and what 

could be embedded in this language. Integration was envisioned in the preliminary 

design, but its details had not been worked through. Some forms of bottoming out 

had been addressed by Lieberman's Actl implementation, but bottoming out of 

scripts and instance descriptions was peculiar to the requirements for Act2. 

As design began, so did the beginnings of an implementation, in order to 

further develop intuitions for how much work is done in message-passing using 

instance description, for the problem of bottoming out, and for what 

implementation aids would be useful. At this time, Scriptcr did not yet exist, and an 

Apiary simulator for the Lisp Machine was still in its infancy. An implementation in 

Lisp would have been very bulky, time-consuming, and difficult to read and modify. 

The circularity problems in bottoming out Act2 are more acute than they were for 

Actl, and this would have accounted for significantly more code. 

We decided to write a meta-circular description of Act2, using it as a tool in 
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the design of Act2 itself. The meta-cireular description, being an abstract 

implementation of Aci2, also provided an opportunity to plan and experiment with 

implementation strategies. 

Once the language design had settled to a reasonable extent. Scripter and the 

Apiary simulator were beginning to become usable for small experiments. We 

decided to implement expressions for a small toy language, as if they were part of 

Act2 itself. An implementation for these expressions was first written in Act2, to 

demonstrate its generality, flexibility, and readability. This included the 

implementation of an actor-based listen-loop, event-based parsing, and event-based 

evaluation. 

Next, an implementation for the toy language was attempted in Scripter, to 

provide higher-level testing of it and to point out any problems and deficiencies in 

the interface it provided to the Apiary. Once the fundamental portions of the toy 

language had been implemented, progressive extensions were made to it, to work 

out more of the implementation problem, including bottoming-out of primitive 

actors and implementing serializes. 

This set the stage for an implementation of Act2 in Scripter. The next step 

might have been to integrate descriptions and pattern-matching into the toy 

language. This was a quantum leap in the complexity and size of the language. 

Instead, work was started on the implementation of a rudimentary version of Act2 in 

Scripter. This grew into the present implementation of an Act2 interpreter. 
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3.1 A Mela-Circular Description of Act? 

3.1.1 Perspective 

The meta-circular description is best understood by first understanding the 

context in which it exists. A users interface to Act2 is an event-based iisten-Ioop, 

with an operating environment in which names are resolved. The listener first 

accepts input from the user in the form of list structure, symbols, and numbers. It 

asks this input to parse itself, producing an actor which represent the abstract syntax 

of the input. This actor may have acquaintances which represent the abstract syntax 

of portions of the input. The listener then asks the abstract syntax actor to evaluate 

itself as an expression in the current environment. 

Each abstract syntax actor is responsible for its own evaluation. Rather than 

having a single interpreter, which accepts, parses, and evaluates the input, Act2's 

approach is "actor-based" or "object-oriented." The interpretation process is a 

cooperative one, with knowledge about each construct localized in the 

implementation of the construct. 

An interpreter for Act2 consists of a set of actors which parse list structure into 

abstract syntax objects, and abstract syntax objects which evaluate themselves and 

create actors or transmit communications as appropriate. Our meta-circular 

description consists of an Act2 implementation of abstract syntax objects 

representing Act2 constructs. That is, we describe the processing which occurs when 

the abstract syntax object receives a request to evaluate itself in some environment. 

The meta-circular description provides a form of informal, high-level 

operational specification of the semantics of each construct. Because of the 

circularities which naturally arise in an Act2 description of itself, our meta-circular 
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description is mathematically vacuous. It docs, however, convey to its reader a fairly 

accurate idea of just what each construct means, in a relatively clear, concise, and 

precise manner.  This made it useful for discussing the design decisions and 

problems with others. It was often less ambiguous than corresponding Knglish 

descriptions. 

It was also useful because of the way it allowed us to postpone dealing with 

low-level implementation detail, such as exactly how communications are 

transmitted, how actors are implemented, how Act2 bottoms out into and interfaces 

with the underlying architecture. Rather, it distills out the high-level problems and 

issues, so they can be dealt with directly, rather than indirectly by debugging a large 

and detailed implementation. For the same reason, it increased the likelihood of 

experimenting with alternatives, because they were relatively quick and easy to try 

out. In the long run, this saved much time and implementation effort. 

Because the meta-circular description was written in a programming language, 

it made case analysis more natural. The likeness to programming tended to promote 

completeness and attention to detail. Often, troublesome cases which might 

otherwise have been ignored or taken for granted became apparent. This also 

allowed us to use the programming intuitions, which we have acquired through 

implementation experience, in the design process. 

In addition, writing the description of Act2 in Act2 provided us with intuitions 

about what Act2 programming would be like, and what Act2 code would look like. 

This experience in itself was responsible for a few changes. Implementing Act2 in 

itself also demonstrates its generality as a programming language. 

In hindsight, the meta-circular description was a very useful design and 

implementation tool. The structure and content of the Scripter implementation of 
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Acl2 was modeled closely aller the ineta-circular description, and progressed 

smoothly as a result. 

3.2 A Toy Language Implementation Kxperimcnt 

When our meta-circular description had become relatively stabilized, we 

began to experiment with the implementation of a very simple expressional 

language. Part of our purpose was to specify the expressions in the language as 

syntactic and semantic extensions to Act2. Since no implementation of Act2 existed, 

the implementation of our toy language would actually be implemented as if part of 

Act2, requiring only the additional implementation of an event-based listen-loop, 

implementation of environments, and installation of appropriate behavior for 

numbers, symbols and lists. 

Initially, we needed only unseriali/.ed actors, which was fortunate, since our 

apiary simulator did not support serializes. Our environments were unserialized, 

even though we realized they would eventually need to be serialized. The 

expressions we chose to start with were representative of the lambda calculus. A 

lambda expression provides the ability to lambda-abstract an expression with 

respect to an identifier. Any free identifiers in the expression are statically bound. 

When evaluated, a lambda expression replies with a unary operator. When this 

operator is "applied" to an operand, the expression it abstracted from is evaluated in 

its original context, but with the lambda-variable bound to the operand. Such an 

application in our actor-based design consists of sending the operand as a message 

in a request to the operator. 

Our lambda and apply expressions have the form: 

(lambda lambda-variable-symbol abstracted-expression) 
(apply operator-expression operand-expression) 
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An implementation in Act2 was trivial. The apply expression simplj evaluates 

the operator and operand expressions, then sends the evaluated operand (v\ rapped 

in a request) to the evaluated operator. The Act2 code is presented below simply for 

illustrative purposes, to present an image of the language, its use and expressiveness. 

Code in this section is intended mainly to provide imagery, and its details need not 

be understood except by readers who are interested enough to browse through 

language descriptions in the appendices. 
(define (new APPLY-EXPRESSION 

(with operator =op) 
(with operand sx)) 

(create-unser1al1zed 
(is-request  (=eval wh1ch-1s (an expresslon-eval)) do 

(reply    (ask (ask op eval)  (ask x eval)))))) 

The lambda expression simply results in a closure, which retains the variable, 

expression, and environment for later use as an operator. 
(define (new LAMBDA-EXPRESSION 

(with variable =var) 
(with body = exp)) 

(create-unseHallzed 
(is-request (an expresslon-eval (with environment =env))) do 

(reply (new closure 
(with variable var) 
(with body exp) 
(with environment env)))))) 

(define (new CLOSURE 
(with variable =var) 
(with body =exp) 
(with environment =env)) 

(create-unser 1 all zed 
(1s-request =val do 

(reply 
(ask exp 

(an expresslon-eval 
(with environment 

(new environment 
(with primary 

(ask (new empty-layer) 
(a grow 

(with symbol var) 
(with value val)))) 

(with secondary env))))))))) 
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The language also had sonic simple expressions, to facilitate experimentation. 

Numbers evaluated to themselves. Hie symbols true and false were bound in the 

initial environment to primitive actors with appropriate behaviors. 

With the addition of an if expression, to choose between two expressions to 

evaluate, the language had the ability to make decisions. The if expression had the 

form: (If boolean-expression expression-if-true expression-if-false). 

Given this as a base, we demonstrated that Act2 indeed had the expressive 

power to implement the lambda calculus, and the elegance to implement it in 

simple, readable code. We also wrote Act2 code implementing environments, and 

representing the behavior of numbers, symbols, and lists. 

This established, we set about implementing environments and a listen-loop in 

Scripter. We provided a scripter interface for Act2 to customize the behavior of 

primitive actors. We implemented event-based parsers for the constructs, and 

installed them in an expression-parsing environment. We implemented abstract 

syntax for each expression, which knew how to evaluate itself, given an 

environment. We ran experiments on the apiary simulator, entering expressions in 

our experimental language, noticing what they parsed and evaluated into, and 

noticing how many events were required for parsing and evaluation. Printing of 

actors was done by Lisp functions. 

Some logical and numeric expressions were provided, to express simple 

computations. These provided somewhat larger and more interesting test cases. 

(not boolean-expression) 
(and boolean-expression boolean-expression) 
(or boolean-expression boolean-expression) 
(eq expression expression) 
( + numerie-exprcssion numeric-expression) 
(- numeric-expression numeric-expression) 
(• numeric-expression numeric-expression) 
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We found ii desirable to further extend our toy language, to remember the 

results of previous computations. We invented a construct for extending the loop's 

prevailing environment by binding a symbol to the result of evaluating an 

expression. In order to make this work right, we introduced a simple 

implementation of serializes to the Apiary, to provide serialized environments. 

Our new construct had the form: (defname symbol expression). 

It allowed us to construct recursive operators, simply by entering an 

expression such as: 
(defname factorial 

(lambda x 
(1f (eq x 0) 

1 
(• x (apply factorial (- x 1)))))) 

Our implementation of expressions requiring the evaluation of sub- 

expressions was a simple one. It would evaluate the sub-expressions sequentially 

from left to right, obtaining the result from the leftmost before beginning the 

evaluation of those to the right. Some evaluators for the lambda calculus have 

included mechanisms for lazy or eager evaluation. For example, in an expression 

such as (apply (lambda x 3) ope rand-expression), it is not necessary to evaluate 

the operand-expression because it is not used in the body of the lambda expression. 

Also, in an expression such as (apply (lambda x (+ x x)) operand-expression), 

the lambda calculus' substitution semantics would evaluate operand-expression 

twice. Introduction of lazy evaluation mechanisms to lambda calculus interpreters 

prevents unnecessary or duplicate evaluations of expressions such as these. 

Lazy evaluation is easy to add to our little language implemented in Act2. We 

can simply extend Act2 to include a simple delay expression, which replies 

immediately with an actor. This actor saves the evaluation environment and the 
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expression's abstract syntax. II no message is ever sent lo the delay, it never 

evaluates the expression. If any are sent, the delay evaluates the expression, replaces 

itself with the result, then processes the incoming communication. The delay 

expression can have the form (delay expression) and can be implemented in Act2 

as: 
(define (new DELAY-EXPRESSION  (with expression sexp)) 

(create-unser 1 all zed 
(1s-request  (=eval wh1ch-1s (an expresslon-eval))  do 

(reply 
(create 

(1s-commun1cat1on  =c do 
(let ((=value match (ask exp eval))) do 

(send-to value c) 
(become value)))))))) 

We can selectively denote the lazy evaluation of an expression by explicitly 

saying (delay expression). For example, a programmer can guarantee lazy 

evaluation of operands by writing apply expressions like 

(apply (lambda x 3)  (delay operand-expression)). In this case, the 

operand-expression would never be evaluated, because the operator would simply 

reply with the value, 3. 

Alternatively, we can have all operands to apply expressions be evaluated 

lazily by trivially modifying our implementation of the apply expression: 
(define (new APPLY-EXPRESSION 

(with operator sop) 
(with operand =x)) 

(create-unserlallzed 
(1s-request  (=eval wh1ch-1s (an expresslon-eval)) do 

(reply    (ask (ask op eval)  (delay (ask x aval))))))) 

The ability to implement the delay and hurry expressions required a full 

implementation of serializers in the Apiary. Eager evaluation was implemented 

using futures. It was expressed in our language as (hurry expression). When 

evaluated, a hurry expression immediately returns with u future actor which 
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represents the result of the evaluation, in much the saine wa> that a dcla} actor did 

above. However, it concurrently asks the expression to evaluate itself, and to 

respond to the future. Until it receives the response, the future will enqueue 

communications intended for the value. Once it obtains the value, the future will 

become the value and will also send all of the enqueued communications to it for 

processing. The implementation of futures is a bit more complicated than the 

implementation of delays. Note tlrat the response from the evaluation of the 

expression must be distinguished by the future from communications sent to the 

value. We provide this ability by using the authentication mechanisms provided by 

Act2. 

Given the existence of the hurry expression, we can explicitly denote eager 

evaluation of an expression with (hurry expression). 

We can provide eager evaluation by default in our little language by 

modifying the apply expression, so the evaluation of the operation proceeds 

concurrently with the evaluation of the operand. 
(define (new APPLY-EXPRESSION 

(with operator =op) 
(with operand =x)) 

(create-unser 1 all zed 
(13-request (=eval wh1ch-1s (an expresslon-eval)) do 

(reply    (ask (hurry (ask op eval))  (hurry (ask x eval))))))) 

In the evaluation of an expression such as (apply (apply op argl) arg2), 

the expressions, op, argl, and arg2, arc evaluated concurrently. 

Some researchers [Backus 78, Dennis 81, Turner 79] believe applicative 

languages to be ideal for concurrent programming. Because every expression is 

completely functional, and has no side-effects, the order in which expressions are 

evaluated is irrelevant. They typically introduce eager evaluation into interpreters 

for these languages, in order to realize this potential for concurrency. No matter 

47 

u 



how they implement their interpreters, some amount of synchronization is 

necessary. In general, this synchronization requires the notion of state change. 

Because of this, the applicative languages are not powerful enough to implement 

their own interpreters. Similarly, these languages are not powerful enough to 

implement interpreters with lazy evaluation. 

3.2.1 Act2 Implementation 

The implementation of Act2 in Act2 has the same style as the implementation 

of the toy language expressions in Act2. It does, however, handle complaints 

wherever they may occur. The listen-loop interface to Act2 has event-based, object- 

oriented parsing {section 5.2, page 96} which makes the language extensible. 

Abstract syntax objects representing Act2 expressions and commands are 

responsible for their own evaluation. 

Making syntactic extensions to Act2 is relatively simple. A programmer 

simply extends the appropriate expression or command parsing environment, 

mapping some symbol which will serve as a kej word to a user-supplied parser. This 

parser will parse list structure denoting an instance of the construct into some 

abstract syntax actor. Act2 provides a construct for establishing this in a simple way. 

For example, here is how we might establish a connection between the concrete and 

abstract syntax for apply and lambda expressions: 
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(dofexprossion apply 
;;   a parser for  "(apply EXPRESSION OPERAND)" 
(create 
(1s-request  (an expression-parse  (with  source = src) 

(with expression-keywords  = ek) 
(with  command-keywords  =ck)) 

do 
(case-for src ;;   note that a LIST 1s  a (simple)  SEQUENCE. 

(1s  ['apply =op sarg] do 
(reply 

(new application-expression 
(with operator 

(ask op  (a parse-yourself-as-express1on 
(with expression-keywords ek) 
(with  command-keywords ck)))) 

(with argument 
(ask arg  (a parse-yourself-as-express1on 

(with expression-keywords ek) 
(with  command-keywords ck))))))))))) 

It is quite likely that installations of Act2 will provide generalized parser 

abstractions, which will often eliminate the need to write code like that shown 

above. Assuming the existence of such an abstraction, prefix-parser, the 

installation of the lambda expression might look like: 
(defexpression lambda 
(new prefix-parser 

(with keyword 'lambda) 
(with number-of-arguments 2))) 

Act2 is also semantically extensible, because a user may define his own 

abstract syntax objects, or redefine pre-existing ones. The implementation of Act2 

constructs consists of definitions of appropriate parsing and abstract syntax actors, 

and the definition of any actors which are useful to create dynamically. 

The implementation of Act2 in Scripter is closely patterned after the mcta- 

circular description. It uses the same major implementation strategies. It differs in 

the details, because Scripter does not have the expressiveness of Act2. 
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Chapter lour 

Issues in the Design of Act2 

4.1 Act2 is Part of a Layered Implementation 

Act2 is part of a layered approach to the design and implementation of a more 

sophisticated actor language system. Prelude is intended to incorporate and 

augment the functionality of the Actl, Omega, and Kther experiments. It will 

integrate their fundamental mechanisms and higher-level approaches, ironing out 

their differences in philosophy. The result will be a high-level, highly-concurrent 

programming language with knowledge representation and problem solving 

capabilities. This language system will be accountable for the actors implemented 

and created within it, making possible the cooperation of applications written within 

it with independently-conceived application systems. 

The design and implementation of Prelude is a rather ambitious project. 

Attempting to implement it all at once would very likely lead to difficulties, as the 

implementation of Plasma did, and might result in a very bulky implementation 

which was difficult to understand and evolve. 

Act2 was designed to serve as a substrate for the implementation of Prelude. 

It can also stand as a programming language in its own right. Act2 addresses 

practical issues involved in an interface with the computer architecture below. It 

addresses issues involved in an interface for programming applications and 

embedding languages above. In addition, it addresses issues involved in integrating 

the fundamental mechanisms of Actl, Omega, and Kther into a coherent language 

base. In this way, a substantial set of issues can be addressed by a manageable 
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project, without inclining the bunion of a full-scale implementation of Prelude. 

Prelude's additional functionality can be embedded in Act2, using Act2 

implementation mechanisms, without the need to address those issues already 

addressed by Act2. Additional features include the ability to construct and 

manipulate lattices of descriptions, related by inheritance; the ability to make 

deductions based on these relationships; more sophisticated resource management 

policies; and dissemination of information. 

4.1.1 Act2 Assumptions 

Act2 itself is built on top of other layers, in which other sets of problems are 

factored out and solved. Lisp-Machine Lisp [Weinreb and Moon 81] provides a 

comfortable interface to the underlying hardware, and provides abstractions suitable 

for representing actors. The worker interface to the Apiary architecture is 

implemented in Lisp, and provides a view of the underlying hardware as part of an 

actor-based apiary. Scripter is a macro language embedded in Lisp, which provides 

a high-level interface to workers, allowing computations to be expressed in terms of 

actor creation, one and two-way communication, and change of behavior, in 

addition to Lisp code. Act2 is implemented in Scripter. 

An important part of the design and implementation of Act2 is an assumption 

about the character of computation on the underlying computer architecture. For 

example, Act2 assumes that the transmission of communications is reliable, cheap, 

and quick. The worker optimizes the transmission of a communication when the 

target is on the same worker as the sender. Workers attempt to maintain locality of 

reference when migrating actors to other workers. 

Act2 assumes that creation of actors is very cheap. All that is involved in actor 
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crcnlion is the allocation in Lisp t>f a small data structure 10 represent ihe actor. 

Aci2 assumes that actors arc garbage-collected, and that the garbage collection 

algorithms are efficient and effective. Each worker does local real-time garbage 

collection of inaccessible actors. An algorithm has been developed for this, which 

reclaims storage quickly [l.ieberman and Hewitt 83]. Garbage collection across 

workers is a more difficult problem, requiring a more sophisticated algorithm by 

which workers cooperate to localize inaccessible actors for intra-worker reclamation. 

Act2 assumes memory is inexpensive and plentiful. This is becoming more 

and more true with time. Act2 also assumes that copying and maintaining multiple 

copies of unserialized actors on different processors is cheap. Actors which cannot 

change can be copied indiscriminately, to increase locality of reference, and to make 

migration easier. 

Act2 assumes that the underlying computer architecture may consist of large 

numbers of processors interconnected by high-bandwidth links. The apiary was 

designed with this in mind. Workers perform load-balancing and migration, in 

order to make use of the available parallelism. 

A consequence of these assumptions is that a high degree of concurrency may 

be obtained by expressing computations in terms of large collections of highly 

specialized actors communicating with each other by transmission of 

communications. That is exactly the style of computation supported by Act2. 

4.1.2 Act! Design Goals 
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4.1.2.1 induration as a Design Goal 

Act2 is designed to integrate the fundamental mechanisms developed in 

experiments with Actl. Omega, and Ether. As such, it is an actor-based language, 

founded on message-passing semantics. It provides mechanisms for creating actors, 

for point-to-point communication, and for expressing two-way communication. 

Act2 makes use of descriptions in fundamental and pervasive ways, which 

allow for them to coexist with other actors. It implements its own mechanisms for 

pattern-matching, which do not involve deduction. Inheritance and deduction 

mechanisms can be introduced as extensions to the language. 

Act2 uses sponsors as its fundamental resource-management mechanism for 

controlling asynchronous computations. It is possible to implement sprites as actors, 

and to introduce more sophisticated resource management policies. Sprites can 

work off patterns which are descriptions, and dissemination of information can be 

performed in coordination with description lattices and point-to-point 

communication. 

4.1.2.2 Expressive Power as a Design Goal 

Expressive power is an objective measure of the generality of a language. 

Because it will be used to implement Prelude and arbitrary applications for 

concurrent systems, Act2 must be general enough to express whatever might be 

necessary. Generality includes the ability to deal with concurrent systems, including 

those which do not assume a closed world model. 

One criterion for generality is the ability to implement Act2 in itself. The 

meta-circular description {section D, page 163} is evidence of this. Another is the 

direct support for the actor model, whose generality has been considered 
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independently. 

Act2 is expected to be used to implement languages as well as applications. 

For this reason, it needs abstraction mechanisms and mechanisms for syntactic 

extension. 

In addition, Act2 is expected to deal with issues such as protection, security, 

and authentication, to protect the integrity of actor systems and allow controlled 

sharing of information. 

4.1.2.3 Expressiveness as a Design Goal 

Expressiveness is a highly subjective measure of the quality of a language. It 

involves such areas as simplicity, friendliness, benevolent character, and range of 

application of a language. For example, Act2 was designed to be interactive. Act2 

was not designed to be a minimal language, providing only enough mechanism for 

the integration and generality goals. Instead, its constructs are geared more toward 

understandability and programmability. It includes software engineering features in 

addition to those of Actl. Act2 was not designed to provide everything a 

programmer might want, but to make it possible and convenient to embed further 

and more useful mechanisms. 

4.2 Programmer Interaction 

One of the important aspects of a language is the interface it presents to a 

programmer. We take a broad notion of "programmer" to include both traditional 

human programmers and computer programs which write or manipulate other 

programs. There are many trade-offs in user-interface design, and more are 

introduced by this broad concept of a user. 
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Our general approach in the design of Act2 has been to attempt to maximize 

flexibility and generality. Specifically, in the area of programmer interface, we have 

opted for a language which is highly interactive in character, for comfort in 

programming. We have also attempted to decouple issues of syntax and semantics, 

so they could be handled separately. 

4.2.1 Interactiveness 

One of the basic requirements for Act2 was that it be designed to be 

interactive in nature. [Sandewall 80] demonstrates the utility of interactive 

programming environments. Experience has show n that more interactive 

programming environments tend to be more comfortable to work with and provide 

a friendlier human interface to the machine and language system [Algol, Lisp, 

Smalltalk, Halbert-thesis]. Act2 was designed as an interpretive language; 

compilation is treated as an optimization which is engineered to fit within this 

framework. The interface to Act2 is a listen-loop, similar in nature to that of Lisp, 

which accepts as input any expression in the language. This encourages a more 

conversational interaction between man and machine. 

There is always an environment associated w ith the listener for resolving 

symbols used in the user's input. This environment corresponds both to the context 

of a conversation and to a personal data-base. The environment is preserved from 

session to session, to provide a sense of continuity. 

Special expressions exist for the binding of names and definition of 

abstractions at the top level. They alter the semantic content of the prevailing 

environment, in order to preserve the definitions for later use. A user can associate 

names with specific actors using the defname expression, and can can define 

abstractions using the define expression. Most other expressions in the language do 
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not affect the environment in which they are evaluated. 

4.2.1.1 Actor-Based Interpretation 

Aet2 is implemented in the same style we advocate for all applications. There 

is no centralized interpreter for the language. Instead, each construct is 

implemented by an abstract syntax actor, which is responsible for its own evaluation. 

This makes semantic extensions possible in a very natural manner — we can simply 

define new abstract syntax actors using the same mechanism for implementing any 

other abstraction. The implementor only needs to piake the abstraction obey the 

communication protocols of abstract syntax actors, accepting communications such 

as requests for evaluation or compilation. 

Parsing is also actor-based. Each construct parses itself, using a parser which 

has been associated VN ith the construct. The listener reads in user input as a set of 

nested syntactic phrases, represented as a composition of list structure, symbols, and 

numbers. Each syntactic phrase is asked to parse itself. List structure scans itself, 

looking for a symbol which has been defined as a keyword for some construct. It 

then delegates the job of parsing to the parser which has been associated with that 

keyword. 

This method of parsing makes syntactic extension of Act2 an easy matter. A 

programmer can install a new keyword/parser pair using the defexpression and 

defcommand expressions. Such declarations are done at top level, to the listener. 

Once again, the actor-based programming discipline gives us the flexibility we 

desire. 
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4.2.2 Act2 Separates Syntax from Semantics 

The actor-based implementation of Act2 decouples the activities of parsing 

and evaluation of language constructs. In so doing, it provides natural means for 

syntactic and semantic extension of the language. In addition, it decouples the 

syntax of the language from its semantics. A set of abstract syntax actor definitions 

embody the semantics of the Act2 language. 

These abstract syntax actors are largely independent from the concrete syntax 

which is mapped onto them by a set of parsers. This separation of syntax and 

semantics allows a large degree of separation of style from mechanism, of 

presentation from representation, of form from function, and of syntactic issues 

from semantic issues. It allows us as language designers to concentrate on different 

sets of issues separately. 

We took advantage of this by concentrating on semantic issues and 

requirements. We chose a concrete syntax which closely resembles the abstract 

syntax we found desirable. Alternative sets of constructs can be mapped onto this 

set of abstract syntax actors if and when desired. 

4.2.2.1 Presentation and Editing Tools 

We gain additional benefits from this decoupling of syntax from semantics. 

Presentation tools can operate with abstract syntax objects, and provide alternative 

ways of looking at them, based on such things as programming style, familiarity of 

the reader with the code, indentation preferences, and available space. This can 

provide a more comfortable way to read code written by others. 

F.diting tools can make it more comfortable to write Act2 code. An editor can 

provide templates for the programmer to fill, decreasing the amount of typing 
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needed. Il can also allow programmers the luxury of persona] slioit-liand, which it 

converts to the appropriate abstract syntax. 

4.2.3 Syntactic Issues 

4.2.3.1 Bracketed Syntax 

Act2 has a bracketed syntax. This was chosen because we needed a 

convenient, uniform way of recognizing phrases and sub-phrases in the language. It 

provides us with this ability even in the face of arbitrary syntactic extensions It 

makes the language amenable to convenient construction and analysis by computer 

programs as well as human programmers. It allows lexical analysis to be performed 

automat;cally, and to be ignored by those making extensions. This in itself removes 

a large part of the complexity of parsing. It reflects the structure of computer 

languages in their syntactic representations. This makes the problems of parsing 

and extension tractable. 

User input is read in as nested list structure, grounded by "atomic" tokens 

such as symbols and numbers. Each list, is asked to parse itself. In doing so, it scans 

itself for a symbol for which has been established a keyword/parser pair. This is the 

mechanism by which syntactic extension is made possible and practical in Act2. 

Bracketed syntax is the most natural way we know of to provide these capabilities. 

4.2.3.2 Template English 

In choosing a concrete syntax for Act2, one of the guidelines we used was to 

try to make it resemble English as much as possible. Whenever possible, we 

attempted to make the meaning of constructs closely resemble the intuitive meaning 

of the phrases denoting them, giving Act2 an air of familiarity and understandability 
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even to novice readers. An Act2 construct often reads somewhat like text, with the 

addition of parentheses to mark off essential clauses. This is especial!) noticeable in 

instance descriptions and new expressions. It is also evident in more complex 

expressions, such as case-for, if, one-of, and let. Some compromises were made for 

the sake of conciseness. There is a point where verbosity ceases to enhance 

readability because a sense of structure is lost. We believe Act2 strikes a good 

balance, being verbose enough to be relatively understandable to novice readers, 

using parenthetical template English to make the structure of the code visible, and 

avoiding overly verbose concrete syntax for constructs. 

Programs are also made more readable by the existence of more familiar 

expressions of common primitive operations. For example, (+ 3 5) can be used 

instead of (ask 3 (a + (with operand 6))) In addition, programmers can use the 

infix notation (3+6) if they feel more comfortable with it. This is slightly more 

readable for novices and has more of an English-like "flow" to it. Unfortunately, 

with the opportunity for arbitrary syntactic extension, there is a danger of confusing 

leading identifiers with keywords. For example, the identifier a in (a + b) might 

cause confusion when parsing the expression, because it resembles an instance 

description. For this reason, Act2 warns programmers when they attempt to bind an 

identifier which also happens to be an expression keyword. 

4.2.3.3 Verbosity 

One important trade-off in Act2 syntax is verbosity. On the one hand, a 

language which is overly verbose may be cumbersome to write programs in, and 

may even be less readable if the main ideas and algorithms are lost in words and 

symbols. On the other hand, a language like API. which is overly terse can be very 

cumbersome to read, even for those who have made the effort it takes to become 

fluent in it. The bias in Act2 is toward readability, at the expense of increased 
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verbosity. Our assumptions arc that more code is read than is actually written or 

modified, and that the readers will often not be the original writers. It attempts to 

combine the local-understandability benefits of natural language phrases with the 

more global-understandability benefits of structured code. Of course, Act2 is 

somewhat flexible about the whole matter, allowing programmers to introduce more 

concise or verbose forms of constructs, using the syntax extension mechanisms. 

Modern editors have abbreviation facilities and other writing aids. Some deal 

directly with the syntax of a language. With the similar tools, an Act2 programmer 

should have few reservations about writing "verbose" code. 

If we look at Act2 code more closely, we find it difficult to justify a more 

concise syntax for its constructs. We could shorten the keywords, but the language 

would become more cryptic. Instance descriptions are about as concise as they can 

be, without an adverse effect on readability. As they are now, they readjust like 

English text and has exactly the connotations we intend, enhancing the imagery of 

even experienced readers. New expressions could be forsaken in favor of a 

positional notation, but we would lose the value of keywords, which are a great aid 

to readability and understandability. One major source of bugs in ihe history of 

Lisp programming has been interface problems and misunderstandings, because 

Reading code is difficult without flipping back and forth between function calls and 

definitions, to see what each parameter means. In addition, the strong resemblance 

between new expressions and instance descriptions is strongly suggestive of the 

relationship between actors and their descriptions, and of Acl2's flexible notion of 

instantiation of abstractions. 

Act2 constructs have been designed so their most common usages are also 

their most concise. For example, the otherwise clauses in create, one-of, and 

case-for constructs are rarely needed, and can simply be omitted, Ilie usual intent 

of programmers is to simply complain if none of the possibilities they allowed for 
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actually occur. In addition, all constructs relay any iinhandled complaints which 

might occur in the evaluation of sub-expressions within them, eliminating a need to 

explicitly wrap a handler around the sub-expressions. 

liiere are many cases in Act2 where the programmer is allowed not to 

explicit!] denote information which can be derived from context. Commands like 

reply and complain allow the programmer not to mention the intended target, when 

handling a request communication. The become command refers to the enclosing 

serializes which need not be explicitly mentioned. When the replacement actor is 

simply another instance of the same abstraction, the new expression within the 

become command need only mention those attributes which will be different. In 

general, Act2's constructs behave in such a manner that customers, complaint 

departments, and sponsors need not be explicitly mentioned by programmers. 

4.2.3.4 Keyword-Based versus Positional Instantiation 

It is possible for Act2 code to be presented in a more condensed form, when 

desired, new expressions can be presented with a lisp-like function call notation 

which eliminates keywords. Programmers can easily make an extension for a 

smalltalk-like keyword notation. 

There are serious issues to consider when choosing a style. From a software 

engineering standpoint, it is very useful for a keyword to describe the significance of 

each parameter of an instantiation. The attribute relations in new expressions are 

very useful for this purpose. They serve as good documentation for readers, and 

allow extra consistency checking between the instantiation and the definition. They 

also eliminate the problems which occur when parameters are permuted. The main 

advantage of positional notation is its conciseness. In writing a program, it is very 

convenient to reduce typing, and in reading a program, it sometimes makes the 
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overall algorithm more apparent by reducing the amount of text required to 

represent it.  ITie benefits of positional notation are often easily obtained with 

appropriate editing and presentation tools. Act2 provides programmers with the 

ability to choose which style they wish for each individual instantiation. 

4.2.3.5 Extensibility 

Part of the success of Lisp has been its extensibility. This feature allowed 

other languages to be embedded within it. It also allowed the language itself to 

grow to include increasingly sophisticated and useful features. 

We also wanted Act-2 to be syntactically extensible, for these and additional 

reasons. We feel it may be desirable to develop more than one concrete syntax for 

Act-2, to serve the needs, desires, and customs of programmers with different styles. 

Syntactic extension allows programmers to choose a level of verbosity which best 

serves their needs, and to introduce whatever syntactic sugaring they wish into the 

language. Customization is an important property of a language which is to be used 

by disparate institutions. 

Assuming syntactic extensibility allowed the Act2 language design to go on at 

the abstract syntax level, without much concern for the syntactic details. It also 

allowed us, in the language design phase, to choose a concrete syntax which is very 

near the abstract syntax, permitting us to concentrate independently on underlying 

mechanisms and programmability. 

Providing the ability for embedding Prelude in Act2 saves us from a full 

implementation of Pi elude; instead, we onl> need to program the extensions. It is 

difficult to anticipate now the syntactic and semantic requirements of Prelude, so 

syntactic extension is even more important. 

62 



4.2.4 1 lie Expressive Character of Act2 

There were some guidelines we used while choosing an abstract syntax for 

Act2. Many of the decisions which needed to be made were very subjective in 

nature, dealing more with expressiveness than with expressive power. We did not 

intend for Act2 to be a kernel language for implementing Prelude. Instead, we 

wanted it to be a full-fledged programming language in its own right, with emphasis 

on mechanisms for good software engineering. This is necessary because the 

implementation of Prelude is a rather complex task in itself, and should be done 

with a suitably high-level and comfortable language. These criteria were deemed 

more important than the size of Act2 and the complexity of its implementation. As 

a consequence, Act2 has high-level, very flexible constructs, such as create, case-for, 

one-of, and let. 

4.2.4,1 Familiarity 

One of the guidelines we followed was to make Act2 syntax be as similar as 

possible to familiar syntax. The syntax for instance descriptions and patterns were 

borrowed, unchanged, from Omega. Our notation for instantiation of abstractions is 

almost identical to the notation for instance descriptions, to make them readable, 

and to suggest a close relationship between the two ideas. Whenever possible, we 

attempted to use the syntax described in (Thcriault 82]. Above all, we did not want 

to make the language much more complex to read or work with. We made an effort 

to express familiar ideas and constructs in familiar ways and with commonly- 

understood notations. For example, we permit the use of infix notation in 

expressions. 
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4.2.4.2 Economy of Concept 

There are relatively few fundamental concepts in Act2. All computation is 

ultimately expressed in terms of actor creation and replacement, communication 

transmission, and simple decision. Properties of actors and the actor model are 

exploited in the language, to avoid introducing new concepts and constructs. There 

is also the familiar and intuitively appealing notion of description. They are used as 

information containers as well as "types" in the language. Pattern matching is used 

for recognizing and extracting information, binding names, accepting 

communications, handling complaints, dispatching on values, testing for equality, 

instantiating abstractions, comparing descriptions, and type-checking. 

4.2.4.3 Uniformity 

In Act2, similar things are done in similar ways. We have already seen the 

similarity of new and a expressions. Creating a new bank account with 

(new bank-account (with balance 500)) is very similar to creating a description 

of the bank account with (a bank-account (with balance 600)) 

The create, caseTor, and one-of expressions are quite similar in the way they 

choose one of many possibilities. They all have the form: 

(introductory-part 
possibility I-1 
possibility-1-2 

possibility- 1-nl 
(otherwise possibility-2-1 

possibility-2-2 

possibility- 2-n2 
(otherwise  ...))) 

The first set of possibilities, possibility I-i, are tried concurrently. The first 

(temporally) to succeed is chosen, and its body of commands is evaluated. If none is 

successful, the second set of possibilities is tried. Any number of sets of possibilities 
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can be denoted in nested otherwise clauses. If none succeed, the evaluation 

complains. 

Another aspect of uniformity is that case-for, let, one-of, and if expressions 

have exactly the same syntax and very similar semantics as case-for, let, one-of, and 

if commands. In addition, these expressions, and the create expression, have bodies 

of commands very much like those of composite commands. This allows concurrent 

activities to be performed as the bodies are evaluated. All bodies have the form: 

do command-1 command-2 ... command-n 

The idea of denoting the natural or exceptional "value" of a composite 

expression is thought of as sending a reply or complaint communication in response 

to a request for evaluation of the expression. Therefore, the same syntax is used for 

this as is used for replying or complaining in response to a request communication, 

in the bodies of create expressions. The reply and complain commands serve both 

purposes. 

4.2.4.4 Programmer Productivity Supported by High-Level Constructs 

Studies have suggested that the average amount of debugged code, measured 

in lines, a programmer can write per day is relatively constant across languages. The 

most interesting of these tests supported this result when comparing assembly 

coding and PL/1 coding. It found that people would write and debug at roughly the 

same rate in lines of code per day. Because a line of PL/1 code typically does much 

more than a line of assembly code, the PL/1 programmers tend to produce more. 

This might be attributable to the increase in readability, understandability, and 

programmabilily, as well as higher-level abstraction mechanisms. 

Part of the goal in the design of actor languages is to do as much as possible 
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for a programmer. Writing highly concurrent programs in some languages, such a^ 

Mesa, assembly code, and even Ada, is somewhat cumbersome and requires special 

attention; concurrency is inherent in Act2 and needs little if any consideration by 

programmers. Act2*s high-level constructs allow convenient expression of complex 

concurrent behavior. 

Another of Act2's features is pattern-matching, which condenses and localizes 

much functionality in areas such as recognition, filtering, and dispatch. Act2 makes 

it. potentially more of a savings, once assertion and deduction mechanisms are 

embedded and made use of. 

4.2.4.5 Abstraction and Extension 

Act2 has mechanisms for defining and instantiating abstractions, the define 

and new expressions. These mechanisms unify the notions of procedural, control, 

and data abstraction by emphasising communication, rather than representation. 

Abstraction allows a programmer to define his own absti actions in addition to those 

which are provided with the language. Because of the uniformity in which pre- 

defined and user-defined abstractions are treated, this can be thought of as raising 

the level of die language itself. It makes the language more suitable for 

implementing applications which are more easily expressed in terms of those 

constructs. 

Act2 goes beyond this aspect of expressiveness, allowing programmers to 

introduce new expressions and commands into the language itself. Not only is it 

possible to define abstractions suitable for special application domains, but it is 

possible to tailor the language itself into one allowing convenient expression of 

fundamental concepts in the application domains. 
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Programmers can exploit the extensibility mechanisms to provide a more 

comfortable language with syntactic sugaring allowing common behavior to be 

expressed concisely. We can extend the language with more specific constructs, 

which are implemented in terms of the more general ones. For example, the if 

construct is simply a specialization of onc-of. It was, however, included because of 

the frequency with which binary decisions occur, and because it makes them more 

readable, and is more familiar to programmers. 

4.3 Act2 has Actor Semantics 

4.3.1 Act2 is Actor-Based 

The Act2 language is based on a well-defined, mathematically understood 

computational model. The integrity and consistency of the actor model have been 

established in [Clinger 81b]. This forma! model serves as a solid foundation for 

Act2, which inherits the benefits of well-definedness, and exploits the properties of 

the model. 

Many of the fundamental issues in language design of a language system, such 

as abstraction mechanisms and concurrent computation, are dealt with abstractly by 

the Actor model of computation [Hewitt and Baker 78). Because Act2 allows the 

characteristics of the model show through at the language level, issues handled by 

the model are inherited by the language. The language design can concentrate more 

on other issues. This is another of the features of a layered language design 

approach. 
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4.3.1.1 Representation Abstraction 

An actor cannot directly view or manipulate the contents or implementation of 

another actor. All it can do is communicate with the actor, asking it for information 

or requesting it to change. Only the actor itself can alter its behavior. This property 

is known by several names, including representation abstraction, protection, 

encapsulation, opacity, and information-hiding. The hiding of implementation 

details has proven itself as one of the fundamental paradigms of software 

engineering. 

Limiting access to an actor's implementation has many benefits in the area of 

software engineering. Techniques for data-type induction have been developed for 

the object-oriented computational model [Liskov 72, Guttag, Horowitz and Musser 

76]. Similar techniques can be used within the actor model [Hewitt and Attardi 

81, Hewitt, Attardi, Lieberman 79]. The correctness of an actor's implementation is 

a local phenomenon, depending only upon its specification, its script, and the 

specification of the actors it communicates with. 

The discipline of communication enforced by actors allows the 

implementation of an actor to change, without affecting the actors which 

communicate with that actor, as long as the actor's communication protocols do not 

appear different to them. It also allows different implementations of an actor to 

coexist. 

4.3.1.2 Absolute Containment 

In addition to being opaque, an actor is entirely self-contained. It can only 

communicate with its acquaintances and with the acquaintances of the 

communication it is currently processing. There is no notion of global state to put 

restrictions on the existence and location of the actor. Actors can be migrated from 
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worker to worker when convenient, because of their machine independence. This 

transportability is possible precisely because there is no dependence of the actor on 

any storage locations local to a worker. 

4.3.2 Modularity 

Actors' properties of representation abstraction and absolute containment 

suggest the modularity inherent in the actor model. The model goes beyond this, 

unifying data, control, and procedural abstractions. The fact that an actor contains 

both data and procedural information (its acquaintances and script), is naturally 

sufficient for representing both procedures and data structures. The model's 

emphasis on communication blurs the distinction between them. 

The emphasis on communication also allows the representation of control 

abstractions as actors [Hewitt 77]. One typical use for control structures in 

programming languages is to obtain a stream of values [Liskov, et al 81]. These can 

be represented as dynamic sequences in Act2, a literal manifestation of the 

"sequences" like those in [Waters 83]. Suppose we have an abstraction 

implementing tree traversal. We can simply create an actor representing the 

traversal of some specified tree. This actor might behave just like a sequence, 

accepting requests for its first and rest. In fact, it retains information about the 

tree and its placement within it, and computes the requested information 

dynamically. 

Sponsors allow the implementation of a new class of control abstraction. They 

regulate the availability and rate of consumption of computing resources by 

asynchronous computations. Explicitly expressing this in the computations 

themselves would drastically increase the complexity of their implementations. 
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Act2 unifies the ideas of data, control, and procedural abstraction in a single 

abstraction mechanism. This abstraction mechanism encapsulates not only the 

creation of actors, but arbitrary expressions in the Act2 language. This allows for a 

more convenient expression of procedural abstractions than that mentioned above. 

The define and new expressions cooperate to provide this very flexible form of 

lambda abstraction. 

Abstractions in Act2 are actors, and can be sent communications just like any 

other actor. This corresponds to the idea of abstractions being first-class objects in 

other languages. This is clear in the case that the abstraction definition simply 

represents the creation of an actor. It is also true in the case of some other arbitrary 

expression. For example, consider the definition of a factorial procedural 

abstraction as a recursive expression. The implementation is installed in a 

factorial atomic description, which can then be sent communications relevant to 

the implementation. 

4.3.3 Message Passing Semantics Permeate Act2 

In an actor-based language such as Act2, everything is an actor. All 

computation is performed using transmission of communications. These provide 

tremendous flexibility in expressing and performing computations, as will be 

discussed below. 

4.3.3.1 Primitive Actors use Message Passing Semantics 

In Act2, the message-passing paradigm of the actor model is used down to the 

level of primitive, pre-defined actors such as numbers and symbols. For example, 

simple arithmetic operations can be performed by the numbers themselves, in 

response to requests to do so. Because a uniform protocol is used throughout, a user 

70 

lMltfltiililftaii4iAiawaliMMäaiMtt*flfeafcMHtaMHifti 



can define his own Turn1, of numbers, such as complex numbers, which behave like 

numbers. Code written for handling numbers in general will work even when some 

of the numbers handled are user-defined ones. The use of message-passing 

semantics in this manner makes the arithmetic operations work across machines, and 

with arbitrary actors using the numeric communication protocols. This is essential 

for concurrent applications in general. Arithmetic operations involving primitive 

numbers on a single worker is viewed as a special case which can be optimised, 

rather than as the only case, such as in many other languages. 

4.3.3.2 Actors Implemented in Act2 have Actor Scripts 

The script for an actor implemented in Act2 is itself an actor. The declaration 

of an abstraction involves the installation of an abstract syntax tree representing the 

abstracted expression. Instantiation of uncompiled abstractions causes this abstract 

syntax tree to evaluate itself. Actors created in this manner have scripts which are 

composed of a tree of abstract syntax actors, representing the behavior of the actor 

in terms of Act2 language constructs. Acceptance of a communication involves 

message-passing among the abstract syntax actors composing its script. 

4.3.3.3 Programs as Data 

Act2 programs are "first-class objects" in the Act2 language. User input is 

read in as symbols, numbers, and list structure. All of these are actors, which can be 

communicated with. Parsing produces abstract syntax trees, composed entirely of 

actors. Environments are first-class objects in the language, and can be accessed, 

created, or manipulated by programs. Evaluation can be done simply by sending an 

evaluation request to an abstract syntax tree. It is evident, then, that Act2 programs 

can be written which manipulate or create other Act2 programs. Such power 

accounts partially for the popularity of lisp. 
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The quote expression is very useful for construction of Act2 code by oilier 

programs. It allows the denotation of unparsed list structure and symbols, of which 

Act2 syntax is composed. The parsc-cxprcssion expression is convenient for 

denoting abstract syntax trees. It parses, but does not evaluate the list structure or 

symbols in its argument. 

4.3.4 Transactions 

All communication in Act2 occurs by one-way, asynchronous, buffered 

transmission of communications. It does not rely on a procedure-call mechanism, as 

do languages like Argus and Ada. Procedure call semantics can be implemented 

efficiently using message-passing. They are simply a special case of the more 

general notion of transactions in Act2. 

Act2 supports three major kinds of communications. Request 

communications correspond roughly to the procedure-call part of the proccdure- 

call-and-return mechanism. They include extra information, customers and 

complaint-departments, indicating where a response should be sent. Reply 

communications correspond roughly to the return part of the procedure-call-and- 

return mechanism. 

A very common pattern of communication is the sending of a request, 

including a customer, to some target actor, followed eventually by the sending of a 

reply to the customer. The sending of the request and the sending of the reply are 

fully decoupled, however. The receiver of the request can redirect the request to 

another actor. It can do some processing and let another finish. It can hang on to or 

pass along the customer from the request, which is a "first class object" in the 

language. It, or some other actor, can eventually reply to the customer. Between the 

sending of the request and the sending of the reply, arbitrarily convoluted patterns 
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of communication transmission can occur. Actors are not arbitrarily restricted by 

strict control structures like procedure call and return. 

4.3.4.1 Customer Chains versus Execution Stacks 

There is no need for execution stacks in Act2. This functionality is subsumed 

by "chains" of customers — customers with customer acquaintances. When they 

receive a reply, they might eventually reply to their customer acquaintances. These 

chains are more flexible than execution stacks. Many such chains can exist. They 

can branch off into multiple customer chains. They can span workers. Portions of 

them can be migrated from worker to worker, independently from the rest. Being 

actors, they can be kept as acquaintances and communicated with. 

The very common pattern of sending a request and accepting a reply are 

expressed very conveniently in Act2. The programmer does not need to explicitly 

construct customers for each request. Act2 expressions transform their procedure- 

call notation, and the contexts in which they occur, into the sending of requests with 

appropriate customers. This is done without programmer effort. Common patterns 

of communication among actors on the same worker can be optimized, increasing 

the efficiency of the transactions. 

4.3.4.2 Complaint Handling 

When an actor accepts a request, it is usually expected to respond. If 

processing of the communication completes without problems, a reply 

communication can be sent in response. If minor problems occur, it is often 

possible to reply with some meaningful message. If, however, irreconcilable 

problems do occur, some means is needed to indicate that fact, as well as to respond 

with some communication with a message which might indicate the reason for the 
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failure and provide any information which might be helpful to recover from the 

problem. 

Act2 provides a special type of communication called a complaint 

communication to represent an exceptional response. This corresponds roughly to 

Clu signals, PL/1 conditions, or error codes. In keeping with the Actor model of 

computation, Act2 performs exception handling using the message-passing 

paradigm. 

Act2 provides mechanisms for handling complaints. The primary one, the 

case-for construct, is for handling complaints generated by the evaluation of an 

expression, which we'll call the guarded expression. It recognizes complaints using 

pattern-matching. It performs an additional service by recognizing replies using 

pattern-matching. That is, the case-for construct makes use of the pattern-matching 

paradigm to recognize and extract information from responses to requests, whether 

they are replies or complaints. Along with this recognition is the selection of a body 

of commands to be evaluated once the response is obtained. 

The case-for construct serves both as a dispatching mechanism for (replies to 

the evaluation of) the guarded expression and as a complaint-handling mechanism 

(if complaints are generated by the evaluation). In this sense, case-for unifies the 

notions of dispatching, complaint-handling, information extraction, and decision- 

making. For example, suppose we had a variation of the account abstraction 

defined in {section 2.3, page 34}, which included the new balance in deposit and 

withdrawal receipts. When making a withdrawal, we could use the case-for 

construct to handle a complaint or to take different actions based on the new 

balance: 
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(case-for (ask my-account  (a withdrawal  (with amount x))) 
(complaint (an overdraft) do  ...) 
(is (a withdrawal-receipt 

(with new-balance (=b such-that (< b 600))))  do  ...) 
(otherwise 

(1s  (a withdrawal-receipt (with balance =b))  do  ...))) 

Act2 provides a mechanism for handling complaints from a command. This is 

very similar to a case-for command with has complaint handlers, exclusively. 

Rather than guarding an expression, this command guards another command. 

Complaints are automatically relayed by constructs which do not explicitly 

handle them. In addition, this does not even cause a degradation in performance, 

because requests have both a customer and a complaint department. Replies are 

sent directly to the customer. Complaints are sent directly to the complaint 

department, with no need for winding down through a customer chain. This idea 

was suggested in [Lieberman 82]. 

Act2 may, itself generate complaints when this is appropriate and there is no 

convenient alternative. For example, if no handler is capable of accepting a 

communication, Act2 will complain to the communication's complaint department 

(if it is a request) or to the implementor. 

4.3,5 Inherent Concurrency 

The actor model, with its one-way, asynchronous, buffered model of 

communication, is inherently concurrent. The Act2 language preserves this inherent 

concurrency in its high-level constructs. 

Whenever no ordering is necessary between the evaluations of separate 

commands and expressions, the Act2 definition does not impose one. This allows 

them to be evaluated concurrently, and their evaluations can proceed in parallel if 
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sufficient parallelism is available. The design of Act2 attempts to minimize 

dependencies among expressions and commands. Inherent concurrency is an 

important aspect of our actor language which distinguishes it from other modern 

programming languages, in which concurrency must be artificially generated, or 

requires special attention from the programmer. 

4.3.5.1 Local versus Global State Change 

As discussed above, change in Act2 is a local phenomenon. An auor can 

change its own behavior, but cannot directly manipulate any form of "global state". 

This permits more concurrency by reducing the necessary synchronization. Because 

change is local, the only synchronization necessary is for serializers to process one 

communication at a time. Allowing change to a global state would require 

additional synchronization among actors and transactions, to preserve the integrity 

of the global state. 

4.3.5.2 Local Rinding versus Assignment 

Act2 has no assignment command. In addition, bindings established in an 

expression or command, such as create, let, and case-for, are not available outside 

that expression or command. Because of this, there are no timing constraints among 

distinct expressions and commands. These expressions and commands can be 

evaluated concurrently. An assignment command would introduce timing 

constraints among commands, requiring them to be evaluated sequentially. 

4.3.5.3 Concurrent Commands and Shared Resources 

When commands share a resource, such as a serializer, programmers may wish 

to rely on additional synchronization. For example, one command might cause 
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some actor to change its state, and the other might ask the same actor for some 

information. Hie programmer may wish the request for information to reach the 

actor after any communications sent to it by the first command have been processed. 

A programmer can impose an ordering upon commands using the sequential 

command. This should only be used when the programmer explicitly relies on such 

timing dependencies. 

4.3.5.4 Concurrent Evaluation and Explicit Sequencing 

Act2 is specified as an inherently concurrent language. For example, 

commands in a command body are evaluated concurrently. Sub-expressions in a 

command or expression are evaluated concurrently. In a set of pattern-matchers, 

such as in let, case-for, or create expressions, all evaluations of patterns and 

expressions and subsequent pattern-matching itself are done concurrently. 

Create, case-for, one-of, and if also contain the otherwise clause as a 

convenient way to serialize sets of possibilities. [Theriault 82] had a similar 

mechanism, but used it as a mechanism for providing a default body. Act2 

generalizes this into a full-fledged sequencing mechanism, from which providing a 

default is a trivial case. For example, it is easy both to provide a default, as in 
(case-for x 

(1s (a stack (with top Sit)) do ...) 

(otherwise (1s something do  ...))) 

and to prioritize the sets of possibilities, as in 
(case-for x 

(1s (a whole-number) do ...) 
(otherwise (1s (an Integer) do ...) 

(otherwise (1s (a real) do -••)))) 
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4.3.5.5 Resource Management 

With the amount of concurrent activity produced by Act2, resource 

management is important. Act2 uses sponsors for resource management. Every 

communication contains a sponsor, which is charged for the processing of the 

communication. This requires cooperation from the underlying apiary architecture, 

which requires payment for processing each event. 

Below is an example of Act2 code which explicitly deals with resource 

management. It is simply ä reworking of the example in {section 3.2, page 46}. In 

this code, it is the sponsor from the evaluation request which pays for the evaluation 

of the contained expression, rather than the sponsor from the first communication 

sent to it. 
(define (new DELAY-EXPRESSION (with expression =exp)) 

(create-unse Hall zed 
(1s-commun1cat1on 

(a request 
(with message ( = eval wh1ch-1s (an expresslon-eval))) 
(with sponsor ass)) 

do 
(reply (create 

(1s-commun1cat1on =c do 
(let ((value match 

(uslng-sponsor s do 
(reply (ask exp eval))))) do 

(send-to value c) 
(become value)))))))) 

4.4 Act2 Integrates Description and Action 

4.4.1 Coexistence of Mechanisms for Description and Action 

One important consideration in the design of Act2 is the unification of 

mechanisms for description with the imperative mechanisms of the actor model. 

Act2 integrates the fundamentals of Act 1 and Omega, which are very different in 
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character. Actl deals in an operational world of message-passing, actor creation, 

and behavior change. Omega deals with knowledge acquisition in a lattice of 

descriptions, and deduction based on installed relationships among them. It models 

change by creating more descriptions, but is incapable of actually implementing 

actors which can change. A language suitable for open systems, or concurrent 

applications in general, must combine both sets of ideas. 

Act2 is built upon the actor model of computation. It has constructs for 

transmission of communications, for making simple decisions, for creating actors, 

and for self-replacement. Act2 also has actors which behave like atomic descriptions 

and instance descriptions, which it uses for their information containment 

properties, for their descriptive properties, and for a direct form of pattern- 

matching. Act2's abstraction mechanism, the define expression, establishes a 

relationship between the two worlds by associating a description with every actor, 

which corresponds to the actor's "type". Act2's pattern matching acknowledges this 

relationship, serving as a form of "type-checking" when appropriate. 

For example, a bank-account actor created with the expression 

(new bank-account (with balance 500)) might be described by the instance 

description (a bank-account) or by the instance description 

(a bank-account (with balance BOO)) if the implementor of the abstraction 

wished to allow the balance information to be revealed. The actor could be matched 

by a pattern of the form (a bank-account) in either case, and by a pattern of the 

form (a bank-account (with balance =x)) in the second case, with the 

identifier x being bound to the balance, 600. 
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4.4.1.1 Abstract Syntax for Description and Action 

One of the problems in integrating the ideas from Actl and Omega is a set of 

apparent name conflicts which arise in the constructs we desire Act2 to have. Note 

the relationship between the instance description (a bank-account ...) and the 

abstraction instantiation (new bank-account ...). In the instance description, 

bank-account is some concept or atomic description. In the instantiation, 

bank-account refers to the implementation of bank-accounts, as previously declared 

in a define expression. 

In addition, flexibility demands that we be able to have arbitrary expressions 

as the concepts of instance descriptions, evaluating to atomic or instance 

descriptions. It also demands that we have arbitrary expressions denoting the 

implementation of an instantiation. Because arbitrary expressions undoubtably 

include locally-bound symbols, bank-account is a symbol in both cases, and must 

be evaluated in the prevailing evaluation environment at that time. 

The resolution of such conflicts is done in Act2 by interpreting bank-account 

as a symbol, and broadening our interpretation of atomic descriptions. The 

functionality of atomic descriptions is extended such that implementations are 

installed in them. This confirms the feeling that there is a relationship between the 

concept of bank-account and the implementation of bank accounts. 

It does not prevent the coexistence of implementations of different bank 

accounts, which can be installed in different atomic descriptions. That is, I can have 

my own concept of bank-account, and a corresponding implementation, whereas 

you too can have your own concept of bank-account as well as your own 

implementation. Act2 will deal correctly with both of them. 

Act2 could have introduced operators to denote atomic descriptions and 
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implementations. For example, abank-account and ibank-account might produce 

atomic descriptions and implementations by performing some calculation, perhaps 

looking them up in different environments. This would have reduced readability, 

and would have been a less general solution. As it stands now, users could extend 

the syntax of Act2 if such expressions were desirable. 

4.4.2 The World of Action 

Act2 contains constructs for transmitting communications. It has constructs 

for creating new actors with specified behaviors and acquaintances. The very nature 

of an actor is that of action. It receives a communication, then causes effects to 

happen. These effects might be communication transmissions or actor creations. 

Primitive actors provide a message-passing, actor-based interface to the underlying 

hardware. For example, some primitive actors might serve as an interface to a 

keyboard, a screen, or a robot arm. In response to communications, they might read 

characters, display information, or construct a ham sandwich. 

4.4.2.1 Change 

One important effect an actor can have is to cause itself to be replaced by 

another actor. This is such a significant concept that Act2 makes a fundamental 

distinction between serializers and unserialized actors. Serializers are Act2's method 

of dealing with change. They are treated very differently in most aspects of their 

existence, such as pattern-matching, equality tests, copying, migration, and 

concurrency. 

4.4.2.2 Local Changes versus Global State Changes 

As we have mentioned earlier, all change is local to an actor. This is done in 

81 

... —>.>~- ... .• 



preference to using a state transition model, in which change happens to some 

global state. A serializer can replace itself with another actor, in response to some 

communication. We have seen the benefits of this for concurrency and software 

engineering. 

4.4.2.3 Maintaining Computation Histories 

Act2 provides a biography mechanism for recording the computation history 

of actors. This allows actors to keep track of the communications they receive and 

what they do in response, in a manner such that the effects of receiving the 

communication can be undone. This feature is an adaptation of the work reported 

in [Jefferson, Sowizral 82]. A serializer which has maintained its history can be 

rolled back to some previous state, or can report on previous states. 

4.4.3 Descriptions as Information Containers 

Part of the integration of Omega descriptions in Act2 is the use of instance 

descriptions as information containers. From this perspective, instance descriptions 

can be thought of as aggregate data types, or type constructors. They, like 

sequences, allow a programmer to express a collection of actors, without 

instantiating any special abstraction. 

An instance description can be thought of as a flexible record structure. The 

concept serves as a tag indicating type. The attributes correspond to record fields, 

where attribute relations are field names, and where attribute fillers are field values. 

In this capacity, instance descriptions are very convenient for packaging actors 

and representing information. They are especially useful as messages in 

communications. The use of instance descriptions for this purpose is especially 
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beneficial, in view of Act2's ubiquitous pattern matching. Even more important is 

the potential it allows. When inheritance and deductive mechanisms are embedded 

in Act2, it may be possible to have different perspectives on incoming information, 

or to coerce the incoming information into a usable form. 

4.4.4 Description of Actors: Data-typing and Specification 

4.4.4.1 Description of Actors 

Part of the integration of Omega descriptions is the use of those descriptions 

to describe actors, much like types in common programming languages. This makes 

pattern-matching work nicely for both instance-descriptions and arbitrary actors. It 

also makes the idea of type potentially much more powerful and general than 

simply that of a tag, as it is in many existing languages. It opens an avenue for 

making assertions and deductions about the properties of a type and about the 

relationships among types, when inheritance and deduction mechanisms are added 

to Act2. 

4.4.4.2 Behavioral Types 

An actor's type is not simply a tag, but a description of the actor. Although 

Act2 itself does not implement assertion and deduction mechanisms, the perspective 

it takes on types is very important in the philosophy of the language, and provides 

tremendous potential for a very powerful and flexible type system. The notion of 

type in Act2 is of describing the behavior of an actor. An actor's type provides 

reliable information about the semantic properties of actors. With this philosophy 

and perspective, actual type mechanisms can range from simple descriptions and 

exact match, which looks much like a tag-oriented scheme, to behavioral 
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specifications ranging from partial to total descriptions of an actor's behavior. The 

full flexibility and generality of the description system can be brought to bear in the 

description of abstractions, including incremental and partial description and 

inheritance of properties from other descriptions. The type system can be arbitrarily 

finely-grained, and have a very flexible notion of type equality and type 

conformance. A form of pattern-matching can be used which treats the pattern 

match as a goal, then uses mechanisms for deduction in the description system for 

establishing or refuting that goal. 

4.4.4.3 Controlling Visibility 

By default, die description associated with an actor is simply a description with 

no attributes, such as (a bank-account) rather than a more explicit one such as 

(a bank-account (with balance 600)) in order to preserve the opacity of the 

actor. Act2 provides alternative expressions for creating actors, so a programmer 

can allow the extra information to be revealed, to allow the extra information to be 

extracted in a pattern-match. Deductions can potentially be made which involve 

these attributes and fillers. One feature of this for serialized actors is that it allows 

convenient extraction of a consistent state. 

4.4.5 The Many Uses of Pattern Matching 

Pattern-matching plays a fundamental and pervasive role in Act2. It is used 

for extracting information from instance descriptions, for authentication, for type- 

checking and extraction of information from actors, for determining equality of 

actors, and for binding variables to actors. It is used for acceptance of 

communications, for dispatch on expressions, for exception-handling, and for 

decision-making. It is also used in the instantiation of abstractions, in the evaluation 

of new expressions. 
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The pattern-matching implemented by Act2 involves no deduction 

mechanisms, and is efficient when compared to deduction. Act2 makes it possible 

to embed deduction mechanisms in the language and implement an extended form 

of pattern-matching which makes use of them. This means that the full power of a 

description system like Omega can potentially be employed in the pattern-matching 

process. 

4.4.5.1 Pattern-Directed Recognition and Extraction 

In Act2, the standard mechanism for recognizing actors, which may or may 

not be instance descriptions, is to use pattern matching. Pattern matching works 

both on descriptions, using simple specialization axioms, and on arbitrary actors, 

using their associated descriptions. Dispatching on the characteristics of an actor 

can be done using pattern-matching. Recognizing communications can be done by 

pattern-matching. 

4.4.5.2 Security 

Security is an important part of modern programming languages. Type- 

chec<ing allows detection of type errors, a very common nuisance in programming. 

Act2's abstraction mechanism allows the implementor to restrict what actual 

parameters are bound to what formals. Act2 allows the types of objects to be 

declared and performs type-checking wherever a programmer puts restrictions. 

Restrictions can be put anywhere a pattern or variable-binding can appear. 

Act2 allows the programmer to refrain from making restrictions: to have 

objects described as something, and to make no restrictions or mild restrictions on 

bindings. It also allows a programmer to make very comprehensive restrictions on 

matching. They not only serve to allow more complete type-checking, but also 
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provide very good documentation for programmers reading the code. Presence of 

type information increases the potential for optimization. 

4.4.5.3 Polymorphism 

Abstractions are typically defined in terms of sub-abstractions. Polymorphism 

is that property of being able to use as a sub-abstraction any of a set of abstractions 

conforming to some expected behavior, rather than a single, pre-specified 

abstraction. This property is often thought of in terms of overloading, generics, and 

parameterized abstractions. Polymorphism is provided by Act2 by its use of 

message-passing semantics as its fundamental means of communication. This is 

similar to the way Smalltalk and Simula provide polymorphism. As long as an actor 

responds to all the right messages in all the right ways, it can be used. For example, 

an operation can be declared, which operates on some set of arguments. The 

operation can be performed successfully on any actors, as long as they behave in the 

correct manner. 

4.4.5.4 Authentication 

Act2 addresses the issue of authentication with atomic descriptions. Each 

creation of an atomic description, (new concept (with name ...)), creates a new 

atomic description which will not match any other atomic description. Everyone 

shares enough atomic descriptions so that they can communicate with each other, 

enough to mail atomic descriptions to each other. 

Suppose you give someone access to a bank account you created — one 

implemented in {section 2.3, page 34}. Unless you give him access to the atomic 

descriptions used as the concepts in the communication-handler patterns (such as 

balance, deposit, and withdrawal), the bank account will not accept any 
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communication he sends to it. Remember that his atomic description with name 

withdrawal is not the same as the one with which you defined your bank-account 

abstraction. You can send him your balance atomic description, which he can bind 

to some identifier h1s-balance, and can then obtain your account's balance by 

sending it a request with message (a h1s-balance). He will still, however, be 

unable to make withdrawals, because he does not have your w1 thdrawal atomic 

description. Because of static scoping, you can define operations with access to 

certain bank account operations which a user of the operation does not have access 

to. 

4.5 Act2 and Open Systems 

4.5.1 Suitability for Open Systems 

Prelude must have the full generality and flexibility of a language suitable for 

open systems [Hewitt, de Jong 82]. Act2, as a substrate for Prelude, must also be 

suitable for this style of programming, by realizing a suitable model of computation, 

providing sufficient fundamental mechanism, and providing a potential for 

embedding appropriate higher-level mechanisms and policies. A requirement for 

languages suitable for open systems is the ability for independent programmers to 

communicate with each other, selectively share independently-produced software 

and data, and merge subsystems together as integrated wholes. Open systems are 

characterized by the coexistence of independently-conceived and evolving software 

applications which need to cooperate in flexible but controlled ways. These 

applications might be autonomously owned by mutually suspicious organizations 

which never-the-less wish to share information and information processing abilities 

to some extent. 
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We believe Act2 is suitable for open systems. It provides a solid foundation 

upon which more sophisticated languages and applications can be implemented. It 

provides mechanisms for description as well as for causing effects and change. It 

also provides for a natural coupling of descriptions and actor systems. Its use of 

descriptions as a "type" mechanism means its fundamental perspective on types is 

quite flexible and potentially very powerful. With the addition of inheritance and 

deduction mechanisms, such a "type" can be extended to include extra semantic 

properties of the abstractions and relationships among abstractions. In the limit, a 

"type" might include a full specification of the abstraction. Similarly, this allows 

very flexible forms of identifier declaration, type checking, abstraction instantiation, 

and parameter passing. These features are extremely useful for programming-in-- 

the-large. The potential flexibility of this type system would allow for the coupling 

of independently conceived and independently-named application sj stems, even in 

the presence of name conflicts. 

Act2 supports controlled sharing and cooperation among independent 

systems. Part of the bottoming out of instance descriptions is a set of concepts 

which can be understood by all users of Act2. This enables independent 

programmers to communicate. Each programmer operates in his own environment, 

which is an actor itself. All environments are distinct. The opacity of actors insures 

that they cannot be compromised directly, without sending communications. 

Authentication is a crucial part of controlled sharing among separate 

applications. Act2's atomic descriptions provide this important functionality. All 

atomic descriptions created by defconcept or (new concept ...) are distinct and 

do not match each other. This turns instance descriptions into key-based access 

mechanisms, in addition to the functionality they already have. Built into Act2's 

recognition facilities are mechanisms suitable for authentication of incoming 

communications. Because Act2 expressions are statically scoped, the environment 



used to resolve names used in Hie concepts of patterns in an actor's implementation 

will be the environment in which the actor was defined. The actor will not be 

compromised simply by using it in another environment. 

One of the most important requirements for languages suitable for open 

systems, and for Act2 in particular, is sufficient generality to express desired 

concurrent computations. By virtue of its actor foundation, Act2 inherits the 

properties shown about the actor model [Clinger 81b]. We have also demonstrated 

some aspects of its generality with initial experiments. For example, with our 

applicative language experiment, we showed that Act2 is more general than 

applicative languages for concurrent systems. We also implemented a shared 

checking account in Act2, which was suitable for concurrent systems could be 

shared among several owners. 

This chapter has discussed a number of issues in the design of Act2. A few 

more issues are discussed in an appendix {section F, page 205}. All of these are 

germane to languages for open systems. The choices made in Act2 for dealing with 

these issues were all made with the goals of suitability for open concurrent systems, 

forexpressibility of high-level applications, and for support of software engineering 

principles. 

4.5.2 Synergy 

It is interesting to note that many of the design decisions for Act2 had a 

bearing on several issues. Also, different design decisions had pleasant interactions 

which went beyond simple additivity. As a simple example, lexical scoping is not 

only more natural for programmers, but combines with our notion of uniqueness of 

atomic descriptions and pattern-matching to provide authentication. Our 

relationship between descriptions and arbitrary actors provides a very flexible type 
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system. Ii also makes pattern-matching suitable fur type-checking, information 

extraction, identifier binding, accepting communications, catching complaints, and 

dispatching on the values of expressions. 
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Chapter Five 

Implementation Issues and Mechanisms 

5.1 Bottoming Out 

The previous chapter described issues which were explored in the design of 

Aet2, assuming the actor model of computation as a foundation. The model » 

conceptually elegant and sound, and is inherently machine-independent. An actor 

language implementation, however, must bridge the gap between this conceptual 

model and a concrete computer architecture rooted in physical hardware. The actor 

model of computation, by its very nature, requires careful implementation for a 

practical realization. There are many potential circularities which must be 

unraveled so useful computation can take place. The following paragraphs will 

point out some of the circularities which might exist in a naive implementation 

attempt 

Actors interact by transmitting communications to each other. The 

communications themselves, as well as the messages they contain within them, are 

also actors. Our conceptual model dictates that actors cannot directly manipulate or 

read each others' contents. Potentially, an actor receiving a communication must 

send it (the incoming communication) further communications to find out what's in 

it, and the communication itself faces the same problem when it receives these 

communications. A good implementation must break this circularity in a general 

and flexible way. 

In the conceptual, machine-independent actor model, every actor has a script, 

which is also an actor. Because it is an actor, the script itself must also have a script. 
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It is obvious ili.it there must exist primitive actors at some level, but a proper 

solution must be sufficiently flexible to let programmers reference and manipulate 

scripts or define their own script actors. 

Instance descriptions are Act2's primary information containment and 

recognition facility. To construct an instance description, we need an appropriate 

atomic description. To get the atomic description, we need to ask an environment 

for it, since all we have is its name. To ask the environment for it, we must construct 

an instance description for a message. 

For a practical implementation, we represent numbers, symbols, and lists as 

themselves — as lisp objects. Such primitive actors must be able to behave like 

actors do, receiving requests and transmitting replies or complaints in response. 

These actors must be made to behave like Act2 numbers, symbols, and lists. 

5.1.1 Rock-Bottom Actors 

Much of the bottoming-out process must be done in intimate cooperation with 

the underlying computer architecture. The Apiary recognizes certain rock-bottom 

actors, such as numbers, lists, and symbols, whose concrete representation is 

inherited directly from the underlying implementation language, Lisp. These 

concrete representations do not contain scripts for processing incoming 

communications. When a worker is instructed to transmit a communication to such 

a primitive actor, the worker is responsible for handling the communication in some 

appropriate way. The worker itself can intercept and directly handle a few special 

requests intrinsically associated with these actors. The rest of the communications 

must be handled by Act2. 

Part of the process of installing Act2 is the installation of actors to serve as 
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representatives for each kind of rock-bottom actor. When a worker cannot directly 

handle a communication for a rock-bottom actor, it asks a representative to handle 

the communication on behalf of the rock-bottom actor. The representative is 

responsible for realizing the expected behavior. 

5.1.2 Scripts 

The Apiary architecture supports the creation of actors with scripts composed 

of Lisp functions. These primitive scripts correspond to microcoded abstractions in 

many other programming languages. Many of the actors used in the 

implementation of Act2 have scripts which were written in Scripter, which compiles 

into Lisp. 

Act2 deals with scripts in terms of abstract syntax trees — hierarchies of actors 

which represent Act2 code. Actors created by instantiation of uncompiled Act2 

definitions have scripts composed of abstract syntax trees. These abstract syntax 

scripts must be integrated into the Apiary implementation, so these scripts can run 

on the Apiary. This is done with a special kind of primitive script with 

acquaintances including the abstract syntax script, the definition environment and a 

description of the actor. These actor-tased scripts coexist with and are implemented 

using the primitive scripts. 

5.1.3 Communications 

Communications are primitive actors which are recognized and manipulated 

directly by the Apiary architecture. They serve simply as a package for transmission 

of information between actors, and are recognized as requests, replies or complaints. 

Communications contain special acquaintances, such as a message, a sponsor or a 

customer. 
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5.1.4 Instance and Atomic Descriptions 

When an actor receives a communication, it typically attempts to recognize the 

communication's message by pattern-matching. The patterns used are quite often 

instance descriptions. An instance description serving as a pattern needs to ask the 

message some questions in order to discover whether it should match. Considering 

the common case where the message is an instance description, we must examine 

what might happen when an instance description receives a communication 

containing another instance description as a message. Does it naively exhibit the 

above behavior? Somewhere, we must break the circularity in which an instance 

description sends an instance description another instance description in order to 

find out what's in it. Much cooperation is needed from the Apiary to bottom out 

instance descriptions. In that respect, they resemble primitive actors like numbers 

and symbols. 

Part of the cooperation we require from the Apiary is a primitive operation 

which determines, without causing any events, whether an actor's script is a special 

instance description script. If the message in an incoming communication is such a 

special instance description, its parts can be extracted directly by special Lisp 

("micro-") code without causing more events. This special Lisp code can extract the 

instance description's concept as well as its attributes and their parts, using its 

knowledge of the the format in which instance descriptions are represented. 

Instance descriptions are represented as primitive, scriptless data structures easily 

recognized by Lisp code l 

This also means that these instance descriptions arc very much like the primitive, rock-bottom 
actors. The Apiary must recognize primitive instance descriptions and make sure any 
communications transmitted to them arc handled. Act2 must install representatives which handle 
communications directed to thcin on behalf of primitive instance descriptions. 
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Once the parts of the instance description have been extracted, the only 

barrier to understanding its meaning is the concept. Using atomic-description 

concepts exclusively would require causing at least one event to find out what it 

meant. In order to break the circularity we've just described, it is crucial that 

somewhere along the line some actor must be able to accept and recognize an 

incoming communication without causing any further events. Therefore, for some 

low-level instance descriptions, a symbol is used as the concept instead of an atomic 

description. All relevant information can be extracted from these easily-recognized 

"primitive" instance descriptions without causing any events. In an Act2 

implementation, we write Lisp code for accepting communications. If it can extract 

all necessary information directly, it does so. If it cannot — because the concept of 

the message is an atomic description or because the message is not a directly 

accessible instance description — it actually resorts to a message-passing protocol 

for obtaining the necessary information. 

Given that we have instance descriptions with concepts that can be either 

symbols or atomic descriptions, and that we want user-written code to be able to 

send messages to any actor, we need some uniform way to denote both kinds of 

instance descriptions. Moreover, we do not want to require users to distinguish 

between them. Once again, we have increased the functionality of atomic 

descriptions in order to solve yet another fundamental problem. This time, we add a 

piece of ("concept-creation") information which tells whether to create instance 

descriptions with a symbol or an atomic description for a concept. When an 

expression denoting an instance description is asked to evaluate itself and the sub- 

expression denoting the concept evaluates to an atomic description, it asks the 

atomic description for an appropriate concept. Based on its concept-creation 

information, the atomic description replies either with itself or with the symbol 

which is its name. By default, defconccpt and (new concept ...) create atomic 
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descriptions which indicate that the atomic description should be used for concepts. 

Another expression, (new primitive-concept ...), creates one which uses the 

name, a symbol, for concepts. 

5.2 Extensibility from a Listen-Loop 

The mechanism for extension of Act2 is the Act2 listener itself. This loop is 

implemented in an actor-based way, which naturally provides much flexibility. 

When the loop is started, an environment becomes associated with it. This is the 

environment which the listener uses to obtain keyword environments for parsing 

and to for resolving names when evaluating expressions. The listener first reads in a 

surface syntax representation — list structure, symbols, and numbers — which 

denote an Act2 expression. It then asks the surface syntax actor to parse itself into 

an abstract syntax actor representing the expression in a meaningful way. When this 

has been successfully completed, the listener asks the abstract syntax actor to 

evaluate itself as an expression, using the prevailing environment for resolving 

names to the intended actors. When the abstract syntax actor has replied or 

complained, the listener asks the response to print itself, then begins the next 

iteration. 

The actor-based parsing technique is responsible for Act2's extensibility. 

When the listener asks a surface syntax actor to parse itself, it provides two 

environments to aid with the parsing. Symbols and numbers can ignore these 

environments, because they typically parse directly into themselves. Lists, on the 

other hand, represent more interesting expressions and commands. In order to 

increase the flexibility of parsing and to distribute the knowledge about different 

expressions and commands, lists solicit the help of more specialized parsers. The 

two parsing environments help realize this behavior by mapping symbols used as 
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keywords identifying a construct to an actor which can parse appropriate list 

structure into an abstract syntax actor representing the construct. One of these 

environments establishes expression keywords, and the other establishes keywords 

for commands. Syntactic extension of Act2 can be done simply by extending these 

environments appropriately. With this technique, lists can parse themselves simply 

by scanning themselves from left to right, looking for a keyword, then can ask the 

associated parser to take care of the rest of the parsing. 

5.3 Providing both Positional and Keyword-Based Instantiation 

The desirability of keyword-based and of positional notation for the 

instantiation of abstractions has already been discussed {section 4.2.3.4, page 61}. 

Act2 prefers the use of keyword-based notation, using the new expression. It also 

makes some provision for the use of positional notation, but discourages its use. For 

example, when (factorial 3) attempts to parse itself as an expression, it discovers 

that there are no expression keywords within it. As a result, it parses into an abstract 

syntax actor representing 

(ask factorial (an Instantiate (with arguments [3]))). Notice that this 

would handle multiple arguments nicely. The factorial atomic description will 

accept the instantiate request, then will proceed to match the arguments, in order, 

with the attribute fillers in the new expression template from the definition of 

factorial. From there, the instantiation will proceed as if the instantiation had been 

written as (new factorial (with number 3)), rather than as (factorial 3), 

assuming the factorial had been defined as in 

(define (new factorial (with number ...))  ...). There is a risk in using 

positional notation in this way, however. If any subexpression should happen to 

look like an expression keyword, the expression would be sent to some undesired 

parser. For example, taking the factorial of the actor bound to the identifier a 
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would be written (factorial a), and the list structure would be sent to a parser for 

instance descriptions2. Of course, it would be possible to extend the language with a 

new kind of expression with prefix notation which would have the right effect. For 

example, an expression of the form (call factorial 3) or (do factorial 3) 

could parse into abstract syntax for 

(ask factorial (an Instantiate (with arguments [3]))). The leading 

keyword would eliminate the possibility of confusion. 

5.4 Making Composite Constructs Work 

One-of, case-for, let, if, and using-sponsor are examples of Act2 constructs 

which can be used both as commands and as expressions. They provide much 

flexibility and convenience in the language. We have already seen the if construct 

used as an expression in an implementation of a factorial actor {section 2.1, page 

31}, and as a command in an implementation of an account actor {section 2.3, page 

34}. If necessary, please refer to {section C.9, page 148} for a description of these 

constructs. 

The commands which are allowed in the bodies of these constructs, and the 

interpretation of some of those commands, depend upon the context in which the 

constructs appear. Our implementation must resolve these problems and must 

enforce additional restrictions required by each context. For example, we never 

want to evaluate more than one become command, because that is semantically 

incorrect (not to mention confusing). If we encounter no become command in a 

serialized communication handler, we must be aware of when processing has 

2 
Fortunately, Act2 would have warned the programmer about a previous attempt to bind a, 

because it is used as an expression keyword. 
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finished, so we can prepare the seriali/er for accepting another communication. No 

become command should ever appear in an expression body context or in a 

communication handler for an unserialized actor. For constructs used as 

expressions, we want to evaluate exactly one reply or complain command, which 

represents the response from the evaluation of the expression. In the context of a 

communication handler, reply and complain commands transmit communications to 

the customer or complaint department from an incoming request. All of these 

problems must be taken care of in a suitable implementation of these constructs, 

even in the face of syntactic and semantic extensions by users. 

The way we deal with these problems in our Act2 implementation3 is to 

introduce a notion of effects, which represent the evaluation of commands. 

Whenever a command receives an evaluation message, it evaluates itself to the best 

of its ability, then replies with an effect representing what has been done and what 

remains to be done. An effect can be a simple instance description containing some 

information by convention, or can be a sequence of effects. For example, 

commands such as reply-to, which have enough information to completely evaluate 

themselves, reply with (a completed-command-effect). Because it does not 

contain target information, a reply command such as (reply message) evaluates 

message, wraps it in a reply communication, then replies to the evaluation request 

with (a send-effect (with communication ...)). A become command such as 

(become exp) evaluates exp, then replies to the evaluation request with 

(a become-effect (with replacement ...))• A composite command replies to 

an evaluation request with the sequence of effects resulting from the body of 

commands it evaluates. 

3 Details can be found in the mcta-circular description in {section 1), page 163}. 
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The other portion of this solution is the processing ofeffects. There are two 

contexts in which commands may be evaluated — in expression bodies and in 

communication handler bodies. When composite constructs are evaluated as 

expressions, they select a body to evaluate, ask the commands to evaluate 

themselves, and collect the resulting effects in a sequence. It then recursively 

processes this effect, ignoring completed-command-effects, complaining if a 

become-effect is seen or unless exactly one send-effect is seen. If a single send- 

effect is left at the end of this process, the communication it contains is sent to the 

customer or complaint-department of the evaluation request, as appropriate. When 

an actor accepts a communication, the body of the chosen communication handler is 

evaluated, and the effects are collected in a sequence. It then recursively processes 

this effect, ignoring completed-command-effects, transmitting the communications 

in send-effects to the customer or complaint department if the incoming 

communication is a request (or complaining if it isn't), and complaining if more 

than one become-effect is seen. Afterward, if a become-effect has been 

encountered, the (serialized) actor can change its state. 

5.5 Serialized and Unserialized Actors 

Serialized and unserialized actors are actually represented and manipulated 

differently by the Apiary architecture. For example, no synchronization is necessary 

for unserialized actors, so they can process different communications concurrently, 

and can be copied indiscriminately. Different copies of an unserialized actor can 

exist on different workers, and are recognized as "the same actor," for purposes of 

matching and equality tests. Serialized actors, on the other hand, need 

synchronization. They can only process one communication at a time. Because they 

can change, serializes cannot be copied arbitrarily. 
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When a communication is sent to a serialize!-, it is enqueued on the serialized 

actor's incoming communication queue for processing. If the actor is not processing 

another communication, it will begin processing this one. When it has finished — 

and it is necessary for it to know when it has finished — it must prepare for 

processing the next communication. If it must become another actor, it forwards 

any communication in its queue to that actor. Otherwise, it begins processing the 

next communication in the queue. If the queue is empty, the serializer goes into a 

dormant but receptive state until it receives another communication. 

5.6 Missing Information 

Some Act2 expressions and commands do not require a programmer to 

explicitly denote all of the information needed for complete evaluation of the 

construct. The missing information is instead obtained implicitly from the context 

in which the evaluation occurs. For example, any construct for sending a message, 

such as reply-to, complain-to, or ask, must provide a sponsor to pay for the 

communication and its processing. 

A new expression inside a become command need not fully specify the new 

actor, if it is of the same type as the current actor. Suppose we define a shared bank 

account actor with a define expression of the form, 
(define (new checking-account 

(with balance =b) 
(with owner =o)) 

If we have a become command like 

(become (new checking-account (with balance x))) which does not mention 

the owner acquaintance, Act2 will create the new checking account actor with the 

same owner. What we wrote is assumed to mean 
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(become (new chocklng-account 
(with balance x) 
(with owner o))) 

The missing information is filled in from the properties of the current actor. 

In both cases, the way the information is provided to the commands is similar. 

An actor receives a communication, and chooses a body of commands to evaluate 

{section D.10.4, page 192}. The evaluation message it sends to each of the 

commands contains not only an evaluation environment, but also includes 

sponsorship information and a description of the instantiation with which the actor 

was created {section D.10.7, page 196}. This extra information is available to any 

command which cares to look at it. Implementations of abstract syntax actors are 

expected to relay this information. The way the become command transmits extra 

information to the new expression is to include it in the expression-eval message it 

sends to the expression it contains. Once again, abstract syntax actors for 

expressions are expected to relay any extra information in eval messages. 

Another form of missing information in Act2 is the provision of default 

communication-handlers for standard protocols required of all actors. For example, 

all user-defined actors will respond to requests with messages such as 

(a match ...), whether or not the implementor explicitly provides one. A 

programmer can explicitly handle any of these messages by including her own 

request handler (which looks just like any other request handler) for it in the first set 

of handlers in a create expression. Otherwise, Act2 will handle them immediately 

after looking in the first set of handlers for one which can accept the 

communication. These default handlers are built into the evaluation of create 

expressions. For more details, see {section D.10.4, page 190} and {section D.10.4, 

page 191}. 

Yet another transfer of extra context information occurs on installation and 
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instantiation of abstractions.  This is the mechanism by which "tvpes" are associated 

with newly-created actors, even though the create expression itself has no such 

information. When a define expression, such as 

(define (new account (with balance =b)) exp) is evaluated, the abstract 

syntax for the new expression is asked to install the abstracted expression with the 

prevailing environment {section DA, page 168}. This asks the account atomic 

description to install, among other things, the instance description 

(an account (with balance sb)). When an expression such as 

(new account (with balance 50)) is asked to evaluate itself, it retrieves the 

installed implementation information {section D.4, page 169}. It creates an 

instance-description, (an account (with balance 50)), which it matches against 

the retrieved description, (an account (with balance =b)), then extends the 

definition environment with binding of b to 60. Finally, it asks the abstracted 

expression to evaluate itself in the extended environment, with the description 

(an account (with balance 60)). When asked to evaluate itself, a create 

expression will use this description information if it is present; otherwise, it will use 

something as its description. 

5.7 Actors and Types 

When an actor is created as a result of the evaluation of a new expression, the 

create expression which actually creates the actor is provided with a description of 

the instantiation, such as (an account (with balance 50)). It remembers all or 

part of this description as a descriptor for pattern-matching. This corresponds to 

data types in some programming languages. By default, it would only use 

(an account) as a descriptor, to preserve the opacity of the actors. A programmer 

may also wish to make the attributes visible. Variations of the create expression — 

the create-visible and crcate-visible-unserializcd expressions — do this, using the 
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whole instantiation description as a descriptor for the newly-created actors.  The 

extra attribute information is then available for extraction in pattern-matching. 

5.8 Making Pattern-Matching Work 

Although basic pattern-matching in Act2 involves no deduction, it does cope 

with both simple matching of instance descriptions and matching which corresponds 

to type-checking. By "simple" matching of instance descriptions, we mean that the 

concepts match without deduction, that all attributes in the pattern are present in 

the object, and that corresponding fillers match "simply". An instance-description 

used as a pattern will match any instance description which is a simple specialization 

of it, and will match any actor which it describes (any actor whose descriptor 

matches). 

Whenever pattern-matching occurs, there is always the possibility that part of 

the matching process will involve binding symbols to actors. The pattern-matching 

process involves a pattern, an object to match, and an unserialized environment layer 

which is extended with symbol/actor bindings as the match proceeds. Pattern- 

matching happens as follows: the pattern if sent 

(a match  (with object 0) (with bindings B)), where B is (new empty-layer). 

What happens from there depends on the behavior of the pattern. 

If the pattern, P, is an instance description, the effect of the match will depend 

upon whether or not the object, 0, is an instance description. If it is an instance 

description, we would simply want to compare them; otherwise, we wish to perform 

a "type check" of 0. The pattern has no way of knowing what to do, so it has the 

object do the work by sending it 

(a converse-match (with pattern P) (with bindings B)). If 0 is an instance 
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description, ii will do a simple instance description match. Otherwise, the default 

handler provided by Act2 for converse-match will simply relay the 

converse-match request to the actor's descriptor, which is an instance description 

and will do a simple instance description match. 

When an instance description, 0, receives a converse match with bindings B 

and with pattern P, it asks the pattern for its concept, which it asks to match os 

concept with bindings B. Next it asks P for a sequence of attribute relations. For 

each relation: if 0 has no attribute with that relation, the match fails. If it has one, it 

asks P for the corresponding filler pattern, which it asks to match the filler of its own 

corresponding attribute. The bindings resulting from each match are fed into the 

next, until the matching is finished. If any of the sub-matches fails, the whole match 

fails; otherwise, the match succeeds with the bindings established during the filler 

matches. 

5.9 Compilation 

Act2 views Compilation as an unobtrusive optimization technique. A user 

should see no functional difference before and after compilation, even when 

debugging code. Compiled code should retain enough information about the source 

code from which it was generated to provide intelligible interaction with the user, 

who only deals in terms of the source code. Compilation is done in terms of 

abstractions. For example, an abstraction defined in a manner such as 

(define (new account ...)  ...) is compiled simply by saying 

(ask account (a compile)). The atomic description then asks its installed 

implementation to perform the appropriate transformations. 

Compilation could be done with arbitrary sophistication. Even the simplest 
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forms of compilation can provide substantial performance improvement. One 

optimization is to eliminate the transmission of as many evaluation and match 

messages as possible by inline expansion of the code from abstract syntax objects. 

Another is to switch from deep binding of free names in the definition environment, 

to straight indexing of acquaintances. Performing these two transformations should 

provide a large return on investment by substantially reducing the amount of 

message-passing that goes on. More optimizations can be added for economizing on 

events, and more conventional optimization techniques can be brought into play. 

5.10 The Ubiquitous Atomic Description 

It is worth a brief enumeration of the functionality of atomic descriptions, to 

gain a better perspective of just how useful they are in our implementation of Act2. 

First of all, of course, they behave like atomic descriptions, representing some 

abstract concept or individual in some user's model of a world. Because of tliis, they 

serve as suitable concepts for instance descriptions. Atomic descriptions are used as 

part of Act2's machinery for establishment of abstractions. Definition of new 

expressions involves installing implementation information in an atomic description. 

This contributes to a smooth coexistence of new expressions and instance 

descriptions. Atomic descriptions contain information pertaining to the creation of 

instance descriptions, contributing to the solution of the bottoming out problem for 

instance descriptions. In addition, the uniqueness and opaqueness properties of 

atomic descriptions combined with their use as instance description concepts 

provide:; an authentication mechanism for controlled sharing of actors in open 

systems. Compilation is done in terms of atomic descriptions. To improve the 

performance of a user-defined abstraction declared as 

(define (new foo ...)  ...) we simply ask the instance description, foo, 

(a compile). Atomic descriptions help make clear the relationship between actors 
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und descriptions of those actors. They also provide a tremendous organizational 

function for an implementation of the language. 
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Chapter Six 

Conclusion 

6.1 Summary 

Act2 is a highly concurrent programming language designed to exploit the 

processing power available from parallel computer architectures. The language 

supports advanced concepts in software engineering, providing high-level constructs 

suitable for implementing artificially-intelligent applications. Act2 is based on the 

Actor model of computation, consisting of virtual computational agents which 

communicate by message-passing. Act2 serves as a framework in which to integrate 

an actor language, a description and reasoning system, and a problem-solving and 

resource management system. 

We have completed a design of Act2 and have implemented a preliminary 

version of an Act2 interpreter. The development process was interesting in its own 

right. In the absence of Scripter, the language we eventually used for implementing 

Act2, we were forced to complete the design without experimenting with an 

implementation. Instead, we created and evolved a meta-circular description of 

Act2 — an implementation of Act2 in itself. This served as our primary design tool, 

as our informal language specification, as our design documentation, as exploratory 

Act2 code, and as a medium with which to explore implementation strategies for the 

language. This was followed by an implementation in Scripter of a variation of a 

subset of the Act2 language, which served as a minimal-inertia test bed for ideas 

before a full-scale implementation was begun. 

Act2 was designed to address basic actor language issues, and to be 
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syntactiailly and semantieally extensible. Because of this, it can serve as a substrate 

for embedding more sophisticated language features — in essence allowing language 

designers to tailor their own languages, concentrating on the issues and mechanisms 

they care about and taking for granted the more fundamental issues which Act2 has 

already addressed. Because of these open-ended requirements, generality and 

flexibility were considered the most important issues in the design and 

implementation of the language. Act2 must have sufficient expressive power to 

implement as broad a range of actor systems as possible, and must be sufficiently 

flexible to permit (and encourage) sophisticated and fundamental extensions as yet 

unanticipated. 

Act2 is based strictly on actor semantics. As a result, the language can exploit 

its well-defined, formally specified foundation. One obvious advantage is the 

unification of procedural, data, and control abstractions. Another is the inherent 

machine-independence and concurrency of the model, as well as the tremendous 

flexibility of asynchronous, unidirectional, buffered communication primitives. The 

permeation of the actor model down to the fundamentals of the language itself give 

it much generality. The emphasis on communications makes the language suitable 

for implementing open application systems. 

Act2 integrates mechanisms for description with mechanisms for causing 

action and change. It uses descriptions for their information-containing ability, as 

well as for describing actors. The result is a very powerful and flexible notion of 

"type", and use of the pattern-matching paradigm to provide an extensive range of 

functionality for the language. Pattern-matching is used for recognition of actors, 

extraction of information from actors, binding identifiers to actors, accepting 

communications, authentication, catching complaints, dispatching on the values of 

expressions, type-checking, parameter-passing, and comparing actors. 
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Aci2 decouples syntactic issues from semantic issues. This helps isolate the 

related sets of issues, so they can be addressed separately. Our approach 

immediately provides several advantages. Extension of the language is natural and 

easy, consisting simply of extending an appropriate environment with a binding of a 

new keyword symbol to a parser for the expression. It is possible to have alternative 

syntaxes for the language, and to have them coexist. It is more convenient to 

develop presentation and editing tools which work on abstract syntax, providing 

different perspectives on and different concrete manifestations of the abstract 

syntax. 

Act2 supports modern software engineering principles. An interpreted, 

interactively oriented language, it encourages a conversational style of 

programming. English-like, but structured, syntax increases readability. A single 

abstraction mechanism (the define expression) unifies the ideas of procedural, data, 

and control abstraction. The mechanism for instantiation of abstractions (the new 

expression) labels each parameter. Act2 allows programmers to declare and check 

the types of actors denoted by identifiers or expressions. A very flexible notion of 

"type" ranges from no type at all to a full specification. 

6.2 Design Philosophy 

There was a definite perspective from which we approached issues, problems, 

and proposed solutions during the design of Act2. There was always a deep concern 

for generality and flexibility. There was a concern for programmability and 

economy of mechanism. This raised such questions as: 
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Can this feature allow more to bo done? 
Can parts of these mechanisms be replaced by user-defined actors? 
Can these mechanisms be combined easily to provide new functionality? 
Can this functionality be achieved with existing mechanisms? 
Can this be done more easily and naturally? 
What new mechanisms need introduction? 
How do they interact with other mechanisms? 
Do they address other issues? 
Can we now remove or hone down some other mechanism? 
Is this construct natural to use? 
Does it do enough? 

It was often necessary to postpone major decisions until others had been 

made. Similarly, it was sometimes necessary' to reconsider previously made 

decisions in light of new ones. Often what initially seemed like a sticky problem, 

when left alone for a while, would eventually be at least partially solved by solutions 

to other problems. In fact, the synergy of concepts and mechanisms in the final 

product is a testimonial to the power and applicability of the underlying ideas, 

which were previously developed by the Message Passing Semantics group. 

6.3 Future Work 

There are still many problems which need to be resolved in the design and 

implementation of Act2. We'll pick an obvious example — attribute relations are 

currently used directly, without evaluation. It is clear that at least some evaluation 

will be necessary in the future, to allow attribute relations such as: 
(with (owner of possession) fred) 
(with (new ...) sx) 
(with v =x)    ;; where "v"  1s an  Identifier. 

One solution is to use identifiers bound to atomic descriptions for relation names, as 

we did for instance description concepts. Unfortunately, this has its own drawbacks. 

It requires more concepts to be defined. It restricts the programmer's choice of 

111 

— • 



—* 

identifier names, because name conflicts would occur if local variables had ihe same 

names as attribute relation names. 

Biographies have only been partially implemented. Also, work needs to be 

done on deciding what kinds of history-oriented services should be provided by 

default for actors. We need to implement compilation. Some preliminary work has 

been done on this, but much more needs to be done about compilation and 

optimization before large scale implementations can be written and run in Act2. 

Work is needed on a programming environment and user interface to Act2. We are 

in need of source-level debugging tools for Act2, which are capable of dealing with 

concurrent activity spanning across workers. Interested readers are encouraged to 

approach the Message Passing Semantics group with suggestions. 
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Appendix A 

Glossary 

acquaintances 

Actl 

Act2 

The set of actors accessible by an actor. See {section 1.1.1, page 
16}. 

A computer language for expressing basic actor-based 
computations, implemented by Henry Liebennan. See {section 
1.3, page 19}. 

An extensible actor language which integrates basic mechanisms 
from Actl, Omega, and Ether. The Act2 programming language 
and interpreter arc the main topics in this document. See 
{section 1.7, page 29}. 

A virtual computational agent, which is machine-independent 
and communicates using message passing semantics. See 
{section 1.1.1, page 15}. . 

A computer architecture consisting of some number of workers 
(processors) interconnected by high-bandwidth links. It is 
responsible for storage management and communication 
transmission. See {section 1.6, page 26}. 

atomic description A concrete actor which represents an abstract concept or 
individual, for purposes of knowledge representation as in 
Omega. For example, an atomic description with name 
automob 11 e can represent the abstract concept of automobile. It 
can be used as a concept in instance descriptions such as 
(an automobile (with color red)). See {section 1.4, page 
21}. 

actor 

apiary 

attribute A part of an instance description, which specializes the 
description. For example, (with color red) is an attribute in 
the instance description, (an automobile (with color red)). 
See {section 1.4, page 22}. 
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attribute kind       Part of an attribute which indicates the significance of the 
attribute to the instance description. There are different kinds of 
attributes, and different axioms can be applied to them. For 
example, with is an attribute kind in (with color red). 

attribute relation Part of an attribute which indicates the relationship of the 
attribute filler to the instance description. For example, color is 
an attribute relation in (with color red). 

attribute filler 

behavior 

binder 

biography 

communication 

complaint 

Part of an attribute which denotes a description or actor which is 
related in some manner to actors described by the instance 
description. For example, red is an attribute filler in 
(with color red). 

A characterization of an actor, denoting what communications it 
can accept and how it will process each of them. See {section 
1.1.1, page 16}. 

An Act2 expression of the form (bind symbol), which is used in 
pattern-matching to bind a symbol to the corresponding 
component of the object being matched. 

A record of the history of an actor. This includes the 
communications the actor accepted, and the effects it caused in 
processing each of them. 

A unit of information flow between actors. A communication is 
an actor containing information for another actor. It is 
transmitted from one actor to another as part of a computation. 
See {section 1.1.1, page 16}. 

A type of communication used by convention in an actor 
language to indicate that tin" processing of a request has not been 
successfully completed, and why. See {section 1.1.2, page 17}. 

complaint department 
An actor included in a request communication, which will accept 
complaints generated during the processing of the request, and 
react appropriately, continuing the computation of which the 
request was a part. See {section 1.1.2, page 17}. 
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concept 

customer 

In reference to instance descriptions, the abstract idea or concept 
of which actors described by the instance description are 
specializations. For example, automobile is the concept of the 
instance description, (an automobile (with color red)). See 
{section 1.4, page 21}. 

An actor included in a request communication, which will accept 
replies from the processing of the request, and will continue the 
computation of which the request was a part. See {section 1.1.2, 
page 17}. 

description A representation of some abstract concept, individual, or 
collection of individuals with specified properties. See {section 
1.4, page 21}, and the definitions of atomic description and 
instance description. 

dissemination 

Ether 

event 

generalization 

The transmission of goals and hypotheses to interested sprites. 
See {section 1.5, page 23}. 

A reasoning system for concurrent systems, implemented by 
William Kornfeld. The reasoning process is modeled after the 
problem-solving activities typical of scientific communities. See 
{section 1.5, page 23}. 

The acceptance of a communication by an actor for processing. 
See {section 1.1.2, page 18}. 

In a description system such as Omega, a generalization of a 
description is another description which describes at least those 
individuals described by the first. For example, the statement 
that ((an automobile)  1s (a moving-object)) establishes 
(a moving-object) as a generalization of (an automobile). It 
automatically relates the knowledge we have about 
(a moving-object), such as how it obeys physical laws of 
motion, to (an automobile). See {section 1.4, page 22}. 

goal In Ether reasoning, a characterization of some problem to be 
solved, or some statement to be proven. See {section 1.5, page 
23}. 
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history A record of the events in an actors "life". See biography. 

hypothesis In Ether reasoning, a characterization of something which is 
thought to be true. See {section 1.5, page 23}. 

inheritance In reference to Omega knowledge representation, if an 
inheritance relation is asserted between one description and 
another, then all individuals described by the first are also 
described by the second. Any information collected about the 
second also applies to the first. See {section 1.4, page 22}. 

instance description 
A representation of some set of related abstract individuals. 
Sometimes used to represent an arbitrary member ofthat set. 
For example, the following might be used to represent the set of 
red automobiles or any arbitrary red automobile, depending on 
the context of usage: (an automobile (with color red)). See 
{section 1.4, page 21}. 

matching 

message 

Omega 

pattern 

See pattern matching. 

Part of a communication. The message is that piece of 
information intended to be interpreted by the target of the 
communication. See {section 1.1.2, page 17}. 

A description system for knowledge representation and 
manipulation, implemented by Gerald Barber. It allows 
assertions to be made about the relationships between abstract 
concepts and individuals, and is able to make its own deductions 
based on these inheritance relationships. See {section 1.4, page 
21}. 

See pattern matching. 

pattern matching The process of determining whether some pattern is a 
generalization of some object. The pattern and object of the 
match may be a description or any other actor. 

Planner An early programming language for Artificial Intelligence 
applications. It provided mechanisms for reasoning, but relied 
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Plasma 

Prelude 

reply 

request 

response 

script 

OH back-tracking to simulate non-determinism. 

llie first programming language based on the actor model of 
computation. See {section 1.2, page 19}. 

An actor language which will have the full functionality of Actl, 
Omega, and Ether. It will be implemented as a set of extensions 
of Act2. See {section 1.7, page 28}. 

A type of communication, used by convention as a response to a 
request which has been successfully completed. See {section 
1.1.2, page 17}. 

A type of communication used by convention to initiate a form of 
communication resembling two-way communication. An actor 
sends a request communication to some target, expecting some 
response as part of the processing. The request contains a 
customer and complaint department which will accept the 
response and continue with the rest of the computation. See 
{section 1.1.2, page 17}. 

A reply sent to a customer, or complaint sent to a complaint 
department, as part of the processing of a request. See {section 
1.1.2, page 17}. 

That portion of an actor which dictates what communications the 
actor can accept and how it will process each. See {section 1.1.1, 
page 16}. 

serialized actor     An actor which can replace itself with another actor, as part of the 
processing of some communication. See {section 1.1.1, page 16}. 

serializer A serialized actor. See {section 1.1.1, page 16}. 

specialization       A description is a specialization of another description if the set 
of abstract or concrete individuals it describes is a strict subset of 
that described by the other description. For example, the 
statement that ((an automobile)  1s (a moving-object)) 
establishes (an automobile) as a specialization of 
(a moving-object). It automatically relates the knowledge we 
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have about (a moving-object), such as how il obeys physical 
laws of motion, to (an automobile). See {section 1.4, page 22}. 

sponsor A resource management agent. The apiary charges for each 
event processed. Every communication transmitted contains a 
sponsor, to pay for the processing of the event. See {section 1.5, 
page 24}. 

sprite An independent problem-solving agent, which actively applies a 
specific problem-solving rule. Each sprite has a trigger pattern 
characterizing which goals or hypotheses which activate it, and a 
body indicating what to do if such an announcement is 
disseminated. See {section 1.5, page 23}. 

target In reference to transmission of communications, the target is the 
intended recipient of a communication. See {section 1.1.2, page 
17}. 

transactions 1. Common patterns of communication, such as request/reply 
and request/complaint. 
2. A computation. All activity caused by the sending of a request. 
See {section 1.1.2, page 17}. 

unserialized actor An actor which cannot replace itself with another, in response to 
some communication. See {section 1.1.1, page 16}. 

worker An independent processor in an apiary architecture. See {section 
1.6, page 26}. 
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Appendix B 

A Sample Session with Act2 

A person interacts with Act2 by conversing with an Act2 listen loop. When 

the listener prompts for input, the person simply types in any Act? expression. This 

expression is evaluated by the listener, which is associated with an environment 

serving as a context for resolving names. The listener displays the response it 

received from the evaluation, then prompts for more input 

In this appendix, we will present a "sample session" of conversational 

interaction with an Act2 listener. This will be slanted in order to gradually 

introduce the constructs in the language. Each iteration will have user input labeled 

request and Act2's response labeled reply or complaint. Brief commentary may also 

be interspersed with iterations, to reveal their significance or explain what's being 

input. 

Like most languages, Act2 has numbers. Primitive numbers can be denoted 

directly, by a sequence of digits, optionally preceded by a minus (-) sign. 

Request: 
10 

Reply: 
10 

Arithmetic operations are defined for numbers, and convenient expressions 

are defined for denoting them. Although both prefix notation, as in (+ 10 7), and 

infix notation, as in (10 + 7), may be used, prefix notation is recommended. 

Request: 
(+ 10 7) 

Reply: 
17 
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One can also directly ask the numbers to perform the operations. In fact, thai 

is exactly what expressions like (+ 10 7) do when evaluated. 

Request: 
(ask 10 (a + (with operand 7))) 

Reply: 
17 

The identifier, true, is bound to a logical value representing truth. 

Request: 
true 

Reply: 
T 

The identifier, false, is bound to a logical value representing falsity. 

Request: 
false 

Reply: 
NIL 

Symbols can be denoted by quoting them to prevent their evaluation. 

Capitalization may be used arbitrarily, because case is ignored when distinguishing 

symbols. 

Request: 
*x 

Reply: 
X 

Act2 has sequences for representing ordered collections of objects. When an 

expression denoting a sequence is evaluated, each of the expressions denoting an 

eiement of the sequence is evaluated. By default, sequences are represented directly 

as lists. 

Request: 
[4 true false (+ 1 2)] 
ffy: Rep, 
(4 T NIL 3) 

A simple expression exists for binding a symbol to some value in the listener's 
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lop level environment. Only the expression denoting the value is evaluated. 

Request: 
(defname x (+ 7 5)) 

Reply: 
X 

Names previously bound in the listener's environment may be mentioned in 

expressions for the listener to evaluate. 

Request: 

Reply, 
17 

(+ 6 x) 

The evaluation of some expressions may result in a complaint instead of a 

reply. The expression below attempts to divide by zero, which is not mathematically 

defined. 

Request: 
(// 6 0) 

Complaint: 
(a d1v1s1on-by-zaro) 

The let construct provides a convenient means for binding symbols to actors, 

for use within a body of commands. It is quite flexible, allowing an arbitrary 

pattern-match instead of just a trivial symbol binding. 

Request: 
(let ((HEX match 3) 

((a foo (with bar =y)) match (a foo (with bar 4)))) 
do (raply (+ x y))) 

Reply: 
7 

The defconccpt expression below binds a new atomic description with name 

add5 to the symbol, add6. 

Request: 
(defconcept add6) 

Reply: 
AD06 
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Now, we can define a new abstraction which adds 6 to a number we provide. 

Request: 
(define (new add5 (with number sn)) (+ 5 n)) 

Reply: 
ADD6 

We can instantiate our new abstraction with a new expression. 

Request: 
(new add6 (with number 2)) 

Reply: 
7 

An attempt to instantiate our abstraction with a form of the new expression 

which does not match will result in a complaint 

Request: 
(new add5 (with bar  'x)) 

Complaint: 
(a failure ...) 

We can also define a bank account abstraction, as in {section 2.3, page 34}. 

We will assume all appropriate atomic descriptions already exist 

Request: 
(define (new account 

(with balance =b)) 
(create 
(1s-request (a balance) do (reply (a balance))) 
(1s-request (a deposit (with amount = a)) do 

(become (new account (with balance (+ b a)))) 
(reply (a deposit-receipt (with amount a)))) 

(1s-request (a withdrawal (with amount sa)) do 
(let ((=new-ba1ance match (- b a))) do 

(1f (> new-balance 0) 
(then do 

(become (new account (with balance new-balance))) 
(reply (a withdrawal-receipt (with amount a)))) 

(else do 
(complain (an overdraft)))))))) 

Reply: 
account 

Now, we can create a new account, binding it to a symbol in the top level 
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environment For later reference. 

Request: 
(defname my-account (new account (with balance 30))) 

Reply: 
MY-ACCOUNT 

We can deposit some money in our account 

Request: 
(ask my-account (a deposit (with amount 5))) 

Reply: 
(a deposit-receipt (with amount 6)) 

We can also withdraw money from our account 

Request: 
(ask my-account (a withdrawal  (with amount 10))) 

Reply: 
(a withdrawal-receipt (with amount 10)) 

If we try to withdraw too much money, our account will complain. 

Request: 
(ask my-account (a withdrawal  (with amount 100))) 

Complaint: 
(an overdraft) 

Finally, let's find out what our current balance is. 

Request: 

Reply, 
26 

(ask my-account (a balance)) 
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Appendix C 

Act2 Language Description 

This section informally presents the meaning of Act2 constructs in English. 

Precision is sacrificed for readability. As a result, parts of this informal description 

may seem ambiguous to some readers, who are invited to refer to the meta-circular 

description {section D, page 163} for clarification. 

C.1 The Actor Model of Computation 

An actor is a fundamental computational entity in the actor model of 

computation. Computations proceed as actors send communications to other actors, 

who process them. Each actor has a script, which indicates what communications 

the actor will accept and how the actor will process each of them. It also has a set of 

acquaintances, which are the other actors it can communicate with. Notice that each 

actor contains both data and procedural information (its acquaintances and script). 

For example, a bank-account actor might have an acquaintance which represents the 

current balance, and a script which determines how it responds to communications 

such as deposit or withdrawal requests. This information is encapsulated by the 

actor, and is therefore hidden from all other actors. The only other actors that an 

actor can communicate with are its acquaintances and the acquaintances of the 

incoming communication. Because of this, an actor is not tied down to any 

hardware processor — it can migrate from machine to machine. 

When they receive communications, actors can do simple recognition of the 

incoming communication, make simple decisions, create new actors, transmit 
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communications to actors, and change their own behavior. Any actor-based 

computation is composed from these primitive operations. It is possible to construct 

sophisticated applications from suitable compositions of actors. Because the actions 

of actors themselves are inherently concurrent, these applications will also be highly 

concurrent, with no special effort. 

There are very important differences between actors whose scripts do not 

allow for a change in behavior and actors which may change. An actor which can 

change its behavior can only process one communication at a time, because the 

processing of one communication might affect the processing of communications 

accepted later. Because it must accept communications serially, such an actor is 

called a serialized actor, or serializer. It restricts parallelism by requiring 

synchronization. 

Actors which cannot change their behavior are called unserializedactors. 

They can process arbitrarily many communications at a time, requiring no 

synchronization whatsoever. Moreover, they can be copied indiscriminately when 

convenient. These actors provide the full potential for parallelism inherent in the 

actor model. 

Communications and the messages within them are also actors. There are 

three kinds of communications, corresponding to a model of interaction among 

actors which is analogous to interaction among humans working together on some 

problem. An actor may send a request to another actor, which is often expected to 

reply upon completion of the requested activity or to complain if some problem 

arises. Rather than waiting for a response to a request, which would limit 

parallelism, an actor spawns new actors to accept the response and pick up with the 

computation where it left off. These actors are included in addition to the message 

in the request, so the actor can begin processing the next communication 
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immediately after sending the request. There are two sueh aetors in each request, a 

customer for processing replies, and a complaini-dcpartmem for processing 

complaints. 

Computation is event-driven. An actor is dormant when not processing a 

communication. Upon receipt of a communication, it is awakened and can proceed 

with the computation. This minimizes the resource usage by actors not doing useful 

work, and makes resource management easier in general. 

C.2 A Glimpse of Act2 

Actor languages provide a higher-level interface to the basic computational 

abilities of actors. They can make use of the inherent concurrency of actors to 

provide concurrency in a natural way at the language level. Act2 is an actor 

language. A user interacts with it using a listen-loop, one iteration of which reads, 

parses, and evaluates an Act2 expression, then prints its result. 

Act2 has some pre-defined actors, like numbers and symbols. Some standard 

names are provided, such as true and false. The symbols are bound to appropriate 

actors in the standard Act2 environment. Constructors of information structure, 

such as sequences and instance descriptions, are also pre-defined. 

Act2 provides a convenient notation for expressing actor-based computation. 

For example, the sending of a request and subsequent reception of a response is 

naturally denoted as an expression in the language. The customer and complaint- 

department are created by Act2 from information available from the context of the 

expression. 

A convenient form of pattern-matching is provided. It is useful for 
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recognizing communications and their contents and binding names to their parts for 

"later reference. This pattern-matching unifies the ideas of comparing descriptions 

and of type-checking. 

The evaluation of an expression should always be thought of as sending a 

request to the expression asking it to evaluate itself in the environment supplied in 

the request's message. For example, if the expression (+3 x) is asked to evaluate 

itself in an environment in which the symbol x is bound to 4, the expression will first 

ask its sub-expressions to evaluate themselves in the supplied environment. They 

reply with the values 3 and 4, then the expression adds them together and replies 

with the value 7. In general, if an Act2 construct containing an expression is 

evaluated and the evaluation of the expression complains, the evaluation of the 

construct will respond with that complaint, unless the construct explicitly handles 

that complaint. If there are more than one such complaining sub-expressions, the 

first to be noticed will be relayed, and the rest will be ignored. 

C.3 Pre-Defined Actors 

Act2 provides pre-defined actors which can be used in computations. These 

pre-defined actors correspond to those provided in most other languages: logical 

truth values, numeric values, symbols, and sequences. All of these are actors, 

behaving like actors in the computational model. They accept communications, 

perform some computation as a result, then transmit communications in response. 

All pre-defined actors are unserialized. 
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t.3.1 Symbols 

A symbol is a name typically used as a keyword or identifier in the Act2 

language. In the printed representation of the language, a symbol is denoted by one 

or more adjacent alpha-numeric characters. For example, reply-to, tl, and 

message are symbols. Symbols are bound to actors in environments. When asked 

to evaluate itself as an expression in some environment, a symbol will look itself up 

in the environment Symbols also respond to a number of other requests, such as 

requests to parse, print, or match. Because the evaluation of a symbol is an attempt 

to get at an actor to which the symbol is bound, denoting the symbol itself is done 

by using a quote expression: (quote foo) or 'foo. 

C.3.2 Numbers 

Numbers are actors which behave like numeric mathematical entities. They 

accept communications such as: a request to add (subtract, multiply, divide,...) 

themselves with some other number, or a request to compare themselves with some 

other number (for equality, or numeric ordering). 

('.3.3 Boolean Values 

Act2 provides values which behave like logical truth or falsity values. These 

accept messages such as a request asking them to perform one computation if they 

represent truth or another if they represent falsity. The identifiers true and false 

are bound to actors with the appropriate behavior. 
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C.3.4 Sequences 

Sequences represent an unserialized, ordered collection of actors. They 

roughly correspond in behavior to Lisp lists. The concrete realization ofthat 

behavior, however, may have many forms. A sequence is created by an expression 

such as (sequence expressions), where each expression is a sequence element. Act2 

provides a syntactic sugaring for this type of expression: [expressions]. For 

example, an empty sequence can be denoted [], and a sequence with the elements 

3, true, and-3.14 can be denoted [3 true -3.14]. An empty sequence can also 

be created by the expression (new empty-sequence), new expressions will be 

discussed below. 

A non-empty sequence can also be thought of as a recursive data structure, 

composed of a first element and a sequence containing the rest of the elements. 

Sequences can be created with an expression of the form, 

(new sequence (with first 3)  (with rest ...)). 

C.3.5 Convenient Expression of Basic Operations 

Act2 provides convenient expressions for increasing the readability of certain 

requests such as those handled by pre-defined actors. For example, the expression 

(+ 3 4) is a convenient expression of (ask 3 (a + (with operand 4))). 

Other such conveniences include: (- 3 2), numeric subtraction; (• 3 2), 

numeric multiplication; (+ 3 2), numeric division; (A true false), logical 

conjunction; (V true false), logical disjunction; (-> true), logical negation; 

(- x y), equality of arbitrary actors; (< x y),less-than partial ordering; (> x y), 

greater-than partial ordering, etc. 
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C.4 Descriptions 

When actors perform computations, they cooperate with each other by 

transmitting communications among themselves. These communications contain 

messages, which can be arbitrary actors. When an actor receives a communication, 

it must be able to recognize the communication and the message therein, so it can 

react to it appropriately, using any information it contains. 

Atomic and instance descriptions were developed in [Hewitt, Attardi, Simi 80] 

for description and reasoning. These descriptions provided a convenient form of 

expressing and recognizing arbitrary information. Act2 makes use of descriptions 

for several important and fundamental purposes. Because descriptions can contain 

arbitrary information in a very convenient way, they are often used as messages in 

communications, such as (a deposit (with amount 30)). They are also used to 

describe actors, in a way which corresponds roughly to data types in existing 

languages, such as (a bank-account (with balance 600)). Instance descriptions 

are often used as patterns for recognizing communications, messages, and actors in 

general, such as (a deposit (with amount =a)). Patterns and pattern matching 

will be described in more detail below. 

( .4.1 Atomic Descriptions 

Atomic descriptions are significant in our descriptions as representations of 

abstract concepts, such as the concept of bank-account and of deposit. They have 

other uses in Act2, some of which will be described below. Atomic descriptions are 

often referenced in Act2 expressions representing instance descriptions by a symbol 

bound to an atomic description. Often, the atomic description has the same name as 

the symbol used to denote it. 

The most convenient way to create new atomic descriptions is with an 
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expression of the Tonn (new concept (with name *foo)). This creates an atomic 

description which is distinct from all other atomic descriptions, even from others 

having the same name. One of the acquaintances of an atomic description (which is 

hidden by the concept interface) is a discriminator which distinguishes it from all 

oi.iers. This discriminator is used in the comparison and matching of atomic 

descriptions. Two atomic descriptions match if they have the same discriminator. 

(.4.2 Instance Descriptions 

Instance descriptions abstractly represent a set of instances of some concept 

For example, (a bank-account) represents the notion of instances of the concept of 

bank-account, and in so doing represents any bank-account which may exist. 

Instance descriptions can be specialized by adding further restrictions to what 

instances they can represent. These restrictions are in the form of attributes. For 

example, (a bank-account (with balance 600)) represents any bank account 

having a balance of 500, is significantly more specialized than the description 

(a bank-account). 

Instance descriptions can be used in Act2 for their descriptive capabilities. 

For example, supposing we had a serialized actor representing a bank account which 

happens to contain i balance of 500. We could describe this actor as 

(a bank-account) or as(a bank-account (with balance 500)) as long as those 

descriptions remain true. Unserialized actors, because they cannot alter their 

behavior, are even more amenable to description. 

Instance descriptions can be used in Act2 for their information-containi 3 

capacity. For example, supposing we had a serialized actor representing a bank 

account with balance 500 dollars and wanted to deposit an additional 30. The most 
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convenient way lo express our desire is to send the bank account a message such as 

(a deposit (with amount 30)). 

Instance descriptions can be used in Act2 for their recognition or pattern- 

matching capabilities. For example, our bank account might be capable of receiving 

requests to deposit some amount, to withdraw some amount, or to reveal the current 

balance. The account needs some way to recognize an incoming request, and what it 

is asking for. It must also be able to extract any additional information from the 

message, such as the amount to deposit or withdraw. It might use an instance 

description as a pattern, makirg use of a few special features for information 

extraction. 

The pattern could look like (a deposit (with amount =a)). Act2 defines 

matching such that this pattern would successfully match all specializations of the 

pattern. This will be described in more detail below. For now, we will simply look 

at what patterns might look like. The expression, =a, is a convenient way of writing 

the expression (bind a). If asked to match some actor in an environment E, this 

expression will bind the identifier a to the actor and reply, indicating a successful 

match, as well as the extended environment. The pattern could impose an 

additional restriction that the actor be a number: 

(a deposit (with amount (=a wh1ch-1s (a number)))). The pattern could 

also impose the restriction that the amount be a positive number, as in 

(a deposit (with amount (=a wh1ch-1s (a positive-number)))) or 
(a deposit 

(with amount 
(=a wh1ch-1s 

((a number) such-that (> a 0))))) 

In general, Act2 expressions representing instance descriptions look like: 
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(a concept 
(attribute- k it id I at t ributc- relatU ml alt r Untie-fillerI) 
{attribute-kind2 attribute-relation2 attribute-Jiller2) 

The keyword an may be used instead of the keyword a as an aid to 

pronunciation and readability. When asked to evaluate itself in some environment 

E, an instance description expression will evaluate its concept expression and its 

attribute-fillers. It will then create an instance description from the resulting 

information in addition to its attribute kind and relation information. 

Each attribute has a keyword which indicates what kind of an attribute it is. 

This affects the applicability of various axioms for deduction involving instance 

descriptions with attributes in Prelude. For the purposes of Act2, which does no 

sophisticated deduction, the keyword with is sufficient for all uses. 

Each attribute has a relation name, which indicates the significance of the 

attribute's filler. By default, Act2 does not evaluate attribute relations, and a raw 

symbol is sufficient there. This can be thought of as analogous to field names of 

records in many languages. 

Each attribute also has a filler, which contains information of interest. The 

filler may be a description, or may be an arbitrary actor. 

C.4.3 Pattern Matching 

Pattern-matching is the fundamental recognition mechanism in Act2. It is 

used for recognizing a communication and its message, and for binding symbols to 

some of the parts for later use. This recognition is performed by communication 

among the actors involved. Typically, an object is available for matching, such as a 

communication, its message, or some acquaintance. Tit ere is also at least one 
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pattern presented for recognition of the object. Associated with a pattern is some 

form of processing involving the matched object. For each attempt at a match, we 

have a pattern for matching, an object to match, and a small environment for 

holding symbol/actor bindings made during the match. Pattern matching is often a 

recursive process, first matching the pattern's top level, then matching each of the 

pattern's fillers. 

A typical object to be matched is an instance description or an arbitrary actor. 

For example, the instance description (a bank-account (with balance 6)) could 

be included as a message in a communication, as could any actor, such as a serialized 

bank-account actor. 

A typical pattern is an instance description, which may match another instance 

description if they are similar, or which may match an arbitrary actor if it is a 

suitable description ofthat actor. For example, the following could be used as 

patterns: 
(a bank-account) 
(a bank-account (with balance =b)) 
(=x whlch-1s (a bank-account)) 

The pattern-matching performed by Act2 itself does not involve sophisticated 

deduction based upon knowledge of inheritance relationships among instance 

descriptions, although constructs providing such matching could be embedded in 

the language. 

Pattern-matching is a negotiation process between patterns and objects, and 

does not violate the principle of absolute information containment by actors. A 

pattern-match between a pattern P and an object O is initiated by an Act2 construct 

by sending P a request with message: 
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(a match 
(with object 0) 
(with bindings (new empty-layer))) 

After some negotiation among the pattern, the object, and their acquaintances, 

we expect a reply of the form (a successful-match (with bindings ...))or 

(a falled-match). 

The behavior of a pattern-match depends upon the way actors used as patterns 

respond to match requests. A few expressions are provided by Act2 which evaluate 

into actors providing useful functionality for matching. These are often used in 

conjunction with instance descriptions to construct patterns. 

The bind expression has the form (bind symbol), and can be written =symbol. 

It does not evaluate its argument. When asked to match some object O, where the 

set of bindings B has been established, the most common result is for it to simply 

reply with a successful match, with an extension of B in which the symbol is bound 

to O. It actually checks first whether or not the symbol is already bound in B. If not, 

it simply proceeds as above. If so, the match succeeds (with bindings B) only if the 

actor bound to the symbol matches the actor, 0. 

The which-is expression has the form (which-1s pattern! pattern!) or 

(pattern! which-Is paticm2). In order for it to result in a successful match, both 

pattern! and pattern2 must match successfully. A typical use of this expression is to 

add some restriction to what can be matched by a bind expression. For example: 

(=x wh1ch-1s (a natural-number)). 

A similar expression adds a restriction in the form of a predicate which must 

be satisfied in order for the match to succeed. A sucht hat expression has the form 

(such-that pattern predicate) or (pattern such-that predicate). When asked to 

match some object with established bindings B, it succeeds only if pattern succeeds 
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with some bindings B\ and predicate yields truth when evaluated in the prevailing 

environment extended with B\ This might be used in a situation such as: 

(=x such-that (< x 6)). 

Atomic descriptions have a name which is meaningful to humans, and a 

discriminator, which is actually used to identify them. An atomic description will 

only match another atomic description which has the same discriminator. Matching 

atomic descriptions always have the same name. Independently-created atomic 

descriptions will not match, even if they have the same name, because their 

discriminators will differ. 

An instance description performs a slightly more sophisticated match. For 

example, the pattern (a bank-account) will match both a comparable instance 

description such as (a bank-account (with balance 600)) as well as a serialized 

actor which is described by an instance description such as (a bank-account). 

Whereas this would naturally occur if Act2 did matching involving deduction, it 

must be done explicitly by Act2 with an appropriate protocol. 

An instance description's simple protocol for matching another instance 

description is: the concepts must match; the relations present in the pattern must be 

present in the object; and the fillers in attributes with the same relations must 

match. 

When the object is not a description, the pattern will match the description of 

the object, rather than the raw object itself. Every actor has a description, which is 

associated with it at its creation time. Act2's simple protocol for matching two 

instance descriptions is Act2 has a predicate which can be used to distinguish 

whether an object matched is an instance description or not. It has the form 

(individual actor), and returns truth when applied to actors which are not 
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descriptions. 

Any other actors are provided with extra communication handlers by Act2 if 

needed, to handle communications such as a request to match. By default, arbitrary 

actors match if they are "the same actor". Sameness for serialized actors means that 

the actors must really be the same actor, and must occupy the same storage. Because 

unserialized actors can be replicated arbitrarily, they are the same if they have the 

same behavior and the same acquaintances. That is, we cannot tell the difference 

between copies of an unserialized actor, because their behaviors will ne\ar become 

different. 

C.5 Top-Level Expressions 

A user's interface to Act2 is a listen loop. At all times, there is a prevailing 

environment associated with the listen loop. It is with respect to this environment 

that expressions entered by the user are evaluated. 

. 

The user's input is read in as list structure, symbols, and/or numbers. What is 

read in is asked to parse itself. The resulting abstract syntax is asked to evaluate 

itself, with respect to the prevailing environment. The response is asked to print 

itself for the user, then the next iteration begins, prompting the user for more input. 

Should any unhandled complaints be generated at any point in a listen-loop 

iteration, the loop itself will handle the exception (by entering a debugger or by 

asking it to print itself), then will proceed with the next iteration. 

The user is able to evaluate arbitrary Act2 expressions simply by typing them 

in to the listen loop. Act2 provides convenient expressions for: extending the 

prevailing environment by associating a symbol with an actor denoted by some Act2 

expression (demame); introducing an abstraction which encapsulates arbitrarily 
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complex information (define); and defining syntactic extensions to the language by 

extending the environments used in parsing Act2 code (defexpression and 

defcommand). 

C.5.1 DEFNAME Expression 

It is convenient for someone conversing with a listen-loop to remember the 

results of expression evaluations for later reference. A convenient expression is 

provided which binds a symbol to an actor in the prevailing environment For 

example, (def name too (+ 3 4)), when asked to evaluate itself in some 

environment, E, would ask (+ 3 4) to evaluate itself as an expression in 

environment E, would accept the reply (7) then ask E 

(a grow (with symbol   'foo)  (with value 7)). 

The expression, (def name expl exp2), when asked 

(an expresslon-eval (with environment E)), will behave as follows. If all goes 

well, the environment E grows to associate the symbol expl with the value (V) of the 

expression exp2 in E, and the defnamc replies V. ]fexpl is not a symbol, the 

defname will complain. If exp2 complains, the defname will relay the complaint. 

C.5.2 DF.FCONCEPT Expression 

Atomic descriptions are a very important part of Act2. Among other things, 

they serve as concepts for instance descriptions. For flexibility, the concept part of 

an expression such as (a foo) denoting an instance description is evaluated. For 

readability, it is convenient to express simple concepts simply. 

Both constraints are satisfied if the symbol foo is bound to a suitable atomic 

description. The defconccpt expression is a convenient way of creating an atomic 
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description and establishing such a binding at the same lime. For example, 

(def concept foo) can be thought of as 

(defname foo (new concept (with name 'foo))), where 

(new concept (with name  'foo)) creates a new atomic description which among 

other things has the name foo. For more details, see {section D.5, page 170} in the 

meta-circular description of Act2. 

C.5.3 DEFINE and NEW Expressions 

Act2 has a single abstraction mechanism which is suitable for encapsulating 

the information content of arbitrarily complex expressions. Only one such 

mechanism is necessary, because the actor model of computation can express 

procedural, data, and control abstraction directly in terms of actors. The define 

expression has the form (define expression-template expression). 

Intimately related to define expressions are new expressions. A define declares 

the meaning of a set of related new expressions. For example, 

(define (new double (with number =n)) (• 2 n)) declares the meanings of a 

class of expressions including (new double (with number 3)), which means 

(* 2 3),and(new double (with number -3.14)), which means (• 2 -3.14). 

Any expressions with concept double hut not of the form 

(new ... (with number ...)) are undefined, and will complain when evaluated. 

For more details, see {section D.4, page 168}. 

new expressions look very much like instance descriptions', having a concept 

and optional attributes, but are imperative rather than descriptive. For example, 

(new bank-account (with balance 300)) may yield a newly-created bank 

account with the stated balance, whereas (a bank-account (with balance 300)) 

would simply describe such an account. Ilie template in a define is typically a new 
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expression whose attribute fillers contain binders. For more details, see {section 

D.4, page 169}. 

A define expression of the form (define expl exp2) will behave as follows: 

The abstract syntax expl is asked to install itself, given the prevailing environment 

and the abstract syntax exp2. The define expression will relay any unhandled 

complaints generated by this process, else will acknowledge completion, expl 

should be a new expression. 

A later define expression declaring a new expression with the same concept 

will shadow the older declaration; only the newest will be used. All concepts in 

well-formed and meaningful new expressions evaluate to atomic descriptions. 

C.6 Simple Expressions 

C.6.1 ASK Expression 

In the actor model, two-way communication is achieved by sending a request 

containing some message as well as a customer to which the target of the request 

should reply. The ask expression is a convenient way of expressing just that {section 

D.2, page 165}. In an ask expression, a target for the request and the message in the 

request are explicitly denoted, but the customer is constructed for the user from the 

context in which the ask expression occurs. For example, 

(ask my-bank-account (a balance)) is an expression whose value will be 300 if 

the symbol my-bank-account is bound to an actor which responds to a request with 

message (a balance) with a reply with message 300. 

A useful way of thinking about the ask expression is: when asked to evaluate 

itself as an expression in environment E in a request with customer C, it asks its 
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target and its message to evaluate themselves in E. It then sends to the target value a 

request with the message value and the customer C. Therefore, the response from 

the evaluation of an ask expression is the response from the ask's target when sent 

the ask's message in a request. 

C.6.2 QUOTE Expression 

Unless explicitly stated otherwise, Act2 expressions typed in by the user are 

both parsed and evaluated.. This is the case for most contexts in which expressions 

are expected. Sometimes, it is desirable to be able to denote some unparsed symbol 

or list structure in a context in which expressions are normally evaluated. The quote 

expression accepts one argument, which it neither parses nor evaluates {section D.2, 

page 165}. The result of a quote expression is typically either a symbol or some list 

structure. For example, an evaluation of the expression (quote foo) yields the 

symbol f oo. An evaluation of the expression (quote (a 6 (x))) yields a list 

containing three elements: the symbol a, the number 6, and a list with one element, 

the symbol x. 

A prefix operator (•), known as "quote", "single-quote", or "accent-mark", is 

provided for convenience. The expression ' exp is syntactically equivalent to the 

expression (quote exp). Thus, the examples above could have been written 'foo 

and '(a 6 (x)). 

C.6.3 PARSK-F.XFRFSSION and PARSE-COMMAND Expressions 

The parse-expression expression parses its argument as an expression, 

producing an abstract syntax actor. It is included only for convenience, because its 

effect can be reproduced by sending a parse request to a quoted expression. An 

expression such as (parse-expression  '(ask foo (a decrement))) evaluates to 
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an abstract syntax actor representing the expression (ask foo (a decrement)), 

which might later be asked to evaluate itself in some environment A similar 

expression, parse-command, exists for parsing surface syntax into abstract syntax 

representing a command. 

C.7 Creating Actors 

The create expression provides a mechanism for creating actors having a 

specific behavior. It contains communication handlers describing what messages the 

actor will accept and how the actor will react to each of them. Each communication 

handler has two parts. A matching part contains an instance-description pattern, 

which characterizes the communications the handler will accept and extracts 

information from communications it matches. A body part contains a set of 

commands to be evaluated when a communication is accepted by the handler. Act2 

commands will be described below. 

When a create expression is asked to evaluate itself in some environment, it 

constructs a new actor from that environment and the communication handlers 

{section D.7, page 172}. It is useful to think of this actor as if it retains the creation 

environment and the abstract syntax for the handlers. At times, the evaluation 

message may contain extra information, such as a description of the actor. This 

information is incorporated in the newly-created actor, as will be mentioned in the 

discussion of the define and new expressions. The newly-created actor is capable of 

accepting and processing communications, as dictated by the communication 

handlers. 

The most common communication handler is for accepting requests, and has 

the form (1$-request message-pattern do commands). If the incoming 
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communication is a request, and its message is an actor which matches the 

message-pattern, then the communication handler is capable of accepting the 

communication. There are similar forms of communication handlers for accepting 

replies, (1s-rep1y message-pattern do commonds), and complaints, 

(1s-complalnt message-pattern do commands). There is also a more general form 

of communication handler, which allows explicit extraction of more or less 

information from the communication. It contains a pattern for matching the whole 

communication, rather than just its message: 

(is-commun1cat1on communication-pattern do commands). 

A create expression itself his the following form, where an otherwise clause 

can be omitted at any point: 
(create 
communication-handlers 
(otherwise communication-handlers 

(otherwlse communication-handlers 
(otherwise  ...)))) 

Upon receipt of a communication, all handlers in the first set of handlers are 

given a chance to match the incoming communication. These attempts at matching 

are performed concurrently. If any of the handlers successfully matches the 

communication, one is chosen (the first one noticed, temporally) to handle the 

message. If all attempts at matching by these handlers fail, some handlers supplied 

by Act2 will be tried by default. These handle such communications as requests to 

print or requests to match some actor. If these fail, and mere is an otherwise clause, 

the next set of handlers is tried. This process continues until a handler is found that 

can accept the communication, or until there are no more handlers to try. In the 

latter case, the actor rejects the communication. 

Rejecting a communication happens as follows. If the communication is a 

request, the actor complains to the complaint-department designated in the request; 
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otherwise, the actor complains to a standard complaint-department reserved for 

such purposes by the implementor. 

A communication handler chosen to process the communication evaluates the 

commands in its body, using the actor's creation environment, extended with any 

bindings established during the match {section D.10.6, page 195}. The commands 

in its body are evaluated concurrently. Some important pieces of information, such 

as a customer, complaint department, or sponsor, are often left un-named or 

completely unmentioned in communication handlers. Act2 has context-sensitive 

commands which can make use of this information. 

In principle, the create operation is sufficient for creating actors. We have two 

kinds of actors: serialized and unserialized. Serialized actors are able to change their 

behavior, and are therefore not permitted to handle more than one communication 

concurrently. Unserialized actors can not only handle many communications 

concurrently, but can also be replicated indiscriminately. The distinction between 

them is important not only for performance, but for recursive computations . By 

default, create creates a serialized actor, to be on the safe side, because an 

interpreter does not conveniently know whether or not one of the handlers with 

cause a change in behavior. A compiler, on the other hand, could create 

unserialized actors from a create expression when it notices that the actor's behavior 

cannot change. 

Because a serialized actor can only process one communication at a time, it cannot send itself 
communications as part of the processing of another communication. This would freeze the actor in 
a deadlock. For example, consider our bank account example from {section 2.3. page 34}. Suppose 
we had implemented die serialized actor to respond to a deposit request by sending itself a 
withdrawal request with the negated amount. Because the serialized actor can only process one 
communication at a time. The withdraws! request would have simply been enqueued for the actor to 
process later. Because it will never get a response from its withdrawal request, me deposit request 
will never be satisfied. 
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Act2 provides the create-unserialized expression, which behaves like the create 

expression, but always creates unserialized actors. This is an aid to the interpreter, 

which does not have enough information conveniently at its disposal to deduce that 

Ute actor cannot change. It is an optimization for compilation, saving the work it 

would otherwise take to determine that the actor is unserialized. It is also good 

documentation for human readers of Act2 code. No attempts in a communication 

handler body to change the behavior of one of these actors will be honored, and a 

complaint will be generated as soon as this is noticed. 

A create-unserializcd expression itself has the following form, where an 

otherwise clause can be omitted at any point: 
(create-unser1al1zed 
communication-handlers 
(otherwlse communication-handlers 

(otherwl se communication-handlers 
(otherwise  ...)))) 

By default, the descriptor which is associated with a newly-created actor 

contains no information about the actor's state. For example, if a bank account 

abstraction was defined with 
(define (new account (with balance =b)) 

(create ...)) 

accounts created with expressions of the form (new account (with balance 500)) 

would be associated with the description (an account), instead of 

(an account (with balance BOO)). This helps guarantee the opacity of these 

actors, since the balance could not be obtained with simple pattern-matching. The 

implementor of an abstraction may make this information available by default by 

using other variations of the create expression. The create-visible and 

create-*Lible-unscrializcd expressions do exactly this, and have syntax similar to that 

of the create and create-unserializcd expressions. In order to make the balance of 

these bank accounts available for pattern-matching, the accounts would have been 

145 

M 



defined with define and creale-visible expressions of the form 
(define (new account (with balance  b)) 

(create-v1s1ble ...)) 

C.8 Simple Context-Free Commands 

Few of Act2's commands are completely context-free. They are for one-way 

transmission of communications, where both the communication and target are fully 

specified. These commands can be included in any context where commands can be 

put 

C.8.1 REPLY-TO Command 

The reply-to command specifies a target and a message. When successfully 

evaluated, it creates a reply communication containing the message, then transmits 

that communication to the target {section D.8, page 174}. For example, 

(reply-to customer 3) sends a reply communication with message 3 to the actor 

bound to the symbol customer in the evaluation environment. 

More specifically, the form of the reply-to command is 

(reply-to target message). When asked to evaluate itself as a command in some 

environment E, it asks target and message to evaluate themselves as expressions in 

environment E. If they both reply, it transmits a reply communication containing 

the message value to the target value. If target complains, then the reply-to 

command relays the complaint. Otherwise, if message complains, the complaint is 

transmitted to the target value. 
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C.8.2 COMPLAIN-TO Command 

The complain-to command specifies a target and a message. When 

successfully evaluated, it creates a complaint communication containing the 

message, then transmits that communication to the target. For example, 

(compla1n-to complaint-department (a failure)) sends a complaint 

communication with message (a failure) to the actor bound to the symbol 

complaint-department in the evaluation environment 

More specifically, the form of the complain-to command is 

(compla1n-to target message). When asked to evaluate itself as a command in 

some environment E, it asks target and message to evaluate themselves as 

expressions in environment E {section D.8, page 174}. If they both reply, it 

transmits a complaint communication containing the message value to the target 

value. If target complains, then the complain-to command relays the complaint 

Otherwise, if message complains, that complaint is transmitted to the target value. 

C.8.3 SEND-TO Command 

The send-to command is for transmitting an arbitrary communication to some 

specified target. It is similar in behavior to the reply-to and complain-to commands, 

except that the whole communication to be transmitted is specified, rather than just 

the message {section D.8, page 174}. The examples above could have been written 

as (send-to target (new reply (with message 3))) and 

(send-to target (new complaint (with message (a failure)))). 
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C.9 Composite Constructs 

Concepts such as name-binding, decision, and complaint-handling are useful 

both in the context of commands and expressions. Act2 provides such a set of 

constructs which can be used both as commands and as expressions. 

The evaluation of each of these constructs may involve the evaluation of a 

body of commands included in the construct. The commands allowed in the bodies, 

and the meaning of a few of those commands, depend upon the context in which the 

construct appears. The construct may be used as an expression, as a command in a 

communication-handler body, or as a command in an expression body. This will be 

explained in more detail below. 

C.9.1 LET Construct 

The let construct allows the extension of the evaluation environment with 

symbol-actor bindings resulting from one or more attempts at matching. The 

extended environment is used in the evaluation of the commands in the body of the 

let construct {section D.9.3, page 181}. 

An example of the use of a let command is: 
(let ((=x match 3) 

(=y match (+ 2 2)) 
((a deposit (with amount sz)) 
match Incoming-message)) 

do 
(reply (+ x y)) 
(become (new trotz  (with balance z)))) 

In general, the form of let constructs is: 
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(let {(paticrnl match expression!) 
\pauern2 match expression!) 
...) 

do 
commandl 
command.2 

When evaluated in some environment E, as either a command or as an 

expression, the set of matchers is first processed. The patterns and expressions in 

the matchers are evaluated concurrently in the environment E. If any complain, the 

let construct relays that complaint. Next, each pattern is asked to match the 

corresponding expression. If any of the matches are not successful, the let construct 

complains. Otherwise, E is extended with all bindings made during the matchings, 

then the commands in the body are evaluated concurrently in the extended 

environment. If the evaluation of any of these commands complains, then the let 

construct relays the complaint 

C.9.2 LABEL Expression 

The label expression is introduced for convenience in denoting self-reference. 

For example, wrapped around a create expression, it allows an actor to reference 

itself with a locally-bound identifier. The label expression has the form 
(label symbol expression) 

It is essentially equivalent to the expression 
(let ((-symbol match (delay expression))) do 

(reply symbol)) 

C.9.3 Interpretation of Command Bodies 

As mentioned earlier, there are restrictions on the commands allowed or 

required in command bodies, depending upon usage of the construct. If the 

construct is used as a command, the commands allowed in the constructs body are 
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the same as the commands allowed in the context in which the construct exists. 

Those commands mean the same as they would if they had occurred in the context 

in which the construct exists. This will become clear as we describe composite 

constructs in more detail below. For example, in the command body of a 

communication handler, we can have a become command, reply or complain 

commands, and others. If one of our commands is a let construct, its command 

body can contain exactly those commands which were allowed in the context in 

which the let construct appeared. That is, it can contain a become command, reply 

or complain commands, and more. The meaning of and restrictions on the 

commands in its command body are the same as if those commands had appeared 

instead of the let construct 

If the construct is used as an expression, there are different restrictions on the 

commands which can appear in its command body, and reply and complain 

commands have a different and special meaning. The evaluation of the construct 

must include the evaluation of a single command which denotes the value of the 

expression with a reply command, or which generates a complaint with a complain 

command. These commands will be described below. 

C.9.4 ONE-OF Construct 

The basic decision-making construct in Act2 is the one-of construct. This has 

the form, where the otherwise clause may be omitted at any stage: 
(one-of 
(If expression do commands) 
• • • 
(otherwise (1f expression do commands) 

4   •    • 

(otherwise ...))) 

When asked to evaluate itself, the construct concurrently evaluates the 

150 

*« 

J , 
MMhMÜkMiMHi«.     ---  



• '•' •—*———-> 

expressions in its first set of arms {section D.9.2, page 179}. Of those returning an 

actor behaving like the truth value true, one is chosen, and the body of commands 

it guards is evaluated. If any of the expression evaluations complains, the construct 

complains. If any of the expressions yields an actor which does not behave like a 

truth value, the construct complains. If all expressions yield an actor behaving like 

the truth value false: if there is an otherwise clause with another set of guards, 

then the above process is repeated; if there is no otherwise clause, the construct 

complains. If a body of commands is chosen for evaluation and its evaluation causes 

at least one unhandled complaint, then the one-of construct will relay the first 

complaint it notices. 

C.9.5 IF Construct 

Act2 provides a convenient construct for simple two-way decisions, the if 

construct. It has the form 

(if expression 
(then do commands) 
(else do commands)) 

As expected, this is simply a convenient form of writing 
(one-of 
(1f expression do commands) 
(1f (-• expression) do commands)) 

C.9.6 CASE-FOR Construct 

Another composite construct is used for handling the result of evaluating an 

(arbitrarily complex) expression. It allows the pattern-matching of the message 

from the evaluation's reply or complaint, followed by the evaluation of some body 

of commands associated with the winning matcher. The match can involve binding 

symbols to parts of the incoming message, which will be used in the evaluation of 
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the chosen body. The pattern-matching itself provides a form of decision-making. 

The case-for construct has the form: 
(case-for expression 

response-handlers 
(otherwise response-handlers 

(otherwise ...))) 

When asked to evaluate itself, it evaluates the expression, whose result will be 

matched {section D.9.1, page 176}. This will result in either a reply or a complaint 

communication with some message. Correspondingly, there are two types of 

response-handlers, one for matching reply communications, 

(1s message-pattern do commands), and one for complaint communications, 

(complaint message-pattern do commands). When a handler is involved in the 

matching process, the following happens: if the type of communication is 

incompatible, the match fails; otherwise, the expression denoting a pattern is 

evaluated, yielding a pattern. If the evaluation complains, the whole construct 

relays the complaint. Next, the pattern is asked to match the message from the 

incoming communication. 

The first set of response-handlers is checked concurrently for those capable of 

handling the reply or complaint communication. The first one noticed which can 

handle the communication is chosen, and the commands in its body are evaluated in 

the evaluation environment for the construct extended with any bindings 

established in the pattern-match. If all of these attempts at matching fail: if there is 

an otherwise clause, the matching attempt is continued; if there is none, and the 

communication being matched is a complaint, that complaint is relayed, otherwise a 

standard complaint is generated. 
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CIO Context-Sensitive Commands 

Act2 provides a few commands whose meaning depends upon the context in 

which they appear. There are two major contexts in which commands appear: in 

the bodies of composite expressions such as let, one-of, or case-for expressions (the 

expression-body-coniexi)\ and in the bodies of communication handlers in 

expressions such as create or create-unserialized, which describe the behavior of 

actors (the handler-body-context). 

C.10.1 REPLY Command 

The reply command represents the transmission of a specified reply 

communication to some unspecified target. The target of the reply depends upon 

the context in which the reply command occurs. The reply command has the form 

(reply expression). When asked to evaluate itself, it asks the expression to 

evaluate itself, then sends the result as a message in a reply communication to the 

unspecified target {section D.8, page 174}. Examples of this will appear below. 

Should the evaluation of the expression complain, that complaint is transmitted to 

prevailing complaint-department instead. The target of the reply depends on the 

context in which the reply command occurs. 

If the reply command occurs in a handler-body-context, the behavior depends 

upon the type of communication received. The reply command is intended to be 

used only when handling request communications, which contain a customer and 

complaint department If this is the case, the reply will be sent to the customer. 

Should any problems occur in evaluation, the resulting complaint will be relayed to 

the complaint department. In the event that the incoming request is not a request, 

some implementation error exists, so a complaint is sent to the implementor of the 

actor. For example, consider a strange-actor abstraction defined as 
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(define (new strange-actor) 
(create 

(is-request sm do (reply 3)) 
(1s-compla1nt =m do (reply 4)))) 

If such an actor receives a request, it will transmit a reply with message 3 to the 

customer included in the request. Notice that this customer is not mentioned 

anywhere in the Act2 implementation of the actor. If such an actor receives a 

complaint, the reply command, not having a customer to which to reply, will instead 

complain of an implementation error. 

If the reply command occurs in an expression-body-context, we think of the 

evaluation of the command as occurring in response to a request for evaluation of 

the expression. Therefore, the reply is sent to that request's customer. Should a 

complaint occur in the evaluation, it is relayed to the request's complaint- 

department, as usual. The net effect of this is that the reply command denotes the 

value of the expression. For example, consider the expression 
(+6 

(let (( = x match 3) 
(=y match 4)) do 

(reply (• x y)))) 

The let construct is used as an expression. The reply command in its body indicates 

that the construct will reply with a 12 when asked to evaluate itself as an expression. 

The + expression will therefore reply with a 17 when asked to evaluate itself as an 

expression. 

Exactly one reply or complain command must be encountered in the 

evaluation of a composite expression's body. If neither is evaluated, or more than 

one is evaluated, then a complaint is generated. 
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C.10.2 COMPLAIN Command 

The complain command is similar to the reply command, and has the form 

(complain expression). Rather than sending a reply with the denoted actor as its 

message, the complain command transmits a complaint containing it instead. In 

essence, the complain command indicates that the evaluation of this expression 

should result in a complaint 

C.10.3 BECOME Command 

The become command may occur in the body of a communication handler in 

an expression which creates an actor. We have already seen an example of this in 

the account example {section 2.3, page 34}, reproduced below with the become 

commands in bold italics. 
(define (new account 

(with balance sb)) 
(create 
(is-request (a balance) do (reply (a balance))) 
(1s-request (a deposit (with amount sa)l do 

(become (new account (with balance (+ b a)))) 
(reply (a deposit-receipt (with amount a)))) 

(Is-request  (a withdrawal   (with amount = a)) do 
(let ((=new-balance match (- b a))) do 

(1f (> new-balance 0) 
(then do 

(become (new account (with balance new-balance))) 
(reply (a withdrawal-receipt (with amount a)))) 

(else do 
(complain (an overdraft)))))))) 

It has the form (become expression), where expression denotes a replacement 

actor. The become command may be evaluated when the actor accepts a 

communication. When it is evaluated, it first asks the expression to evaluate itself. 

If the expression evaluation complains, that complaint is relayed through the 

become command. Otherwise, the actor changes its behavior such that it is 

indistinguishable from the replacement actor resulting from the evaluation of the 
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expression in the become command. For more details, see {section D.8, page 173} 

and {section D.10.4, page 189}. 

No more than one become command should be evaluated in the evaluation of 

a handler body. If an attempt to do this is made, a complaint will be generated. The 

become command is not permitted in an expression-body-context. If it does occur 

there, a complaint will be generated. For example, the become command would be 

inappropriate in a context such as 

(+ 5 
(l8t ((=x match 3) 

(=y match 4)) do 
(become (* x y)) 
(reply (• x y)))) 

If the actor was created with a new expression declared by a define expression 

of the form (define (new ...) (create...)), the expression in a become 

command in one of its handlers can specify values for some of the attributes, and 

fillers for the rest will be derived from the actor itself. That is, only those attributes 

which are different need be mentioned. For example, the new expression in the 

become command below is equivalent to 

(new checking-account (with balance  ...)  (with owner o)): 

(define (new checking-account (with balance = b)  (with owner =o)) 
(create 
(1s-request (a deposit  ...) do 

(become (new checking-account (with balance  ...))) 
...) 
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Cll Other Commands 

C.ll.I CONCURRENT and SEQUENTIAL Commands 

The concurrent and sequential commands have the form 

(concurrent commands) and (sequential commands). Commands are normally 

evaluated concurrently in Act2, so unless nested inside a sequential command, a 

concurrent command serves only to group a set of commands into a single 

command. This is useful in conjunction with the handle-complaints command, 

which is described below. The net effect of a concurrent command is to cause the 

concurrent evaluation of the commands it contains. The sequential command, on 

the other hand, causes the commands to be evaluated sequentially, in order of 

occurrence. If any of the commands in either should complain, then the sequential 

or concurrent command simply relays the first complaint it notices. 

C.l 1.2 HANDLE-COMPLAINTS Command 

The case-for construct is useful for handling complaints generated in the 

evaluation of an expression. It is also useful to be able to handle complaints 

generated in the evaluation of a command. The handle-complaints command does 

exactly this. For example, if we wish to handle some of the complaints which might 

arise in the body of a communication handler for some actor, we might define the 

actor as 
(define (new foo ...) 

(create 
(1s-request  ...  do 

(handle-complaints command 
(complaint (a bar  ...) do ...) 

or if we wish to handle complaints from more than one command, wc can group 

those commands with a concurrent command, as in 
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(define (new foo ...) 
(create 

(is-request   ...  do 
(handle-complaints (concurrent commands) 

(complaint (a bar  ...) do  ...) 

It looks very similar to the case-for command. Rather than guarding an 

expression, it guards a command. Rather than having both is and complaint 

handlers, it has only complaint handlers, since commands do not reply with a value. 

Therefore, this command has the form, where any of the otherwise clauses may be 

omitted: 

(handle-complaints command 
(complaint pattern do commands) 

(otherwise (complaint pattern do commands) 

(otherwise  ...))) 

If no complaints are generated by commands meaning of the 

handle-complaints is the same as the meaning of command itself. If a complaint is 

generated in the evaluation of command, then the behavior of the handle-complaints 

is very similar to that of a case-for construct used as a command. Each set of 

complaint handlers will be tried in turn. 

C.I 1.3 USING-SPONSOR Construct 

Act2 makes use of special actors known as sponsors for resource management, 

in order to impose some control over parallel computation. Normally, users need 

not bother with these, since the default policies for resource usage are adequate for 

average use. Programmers desiring more control over resource usage by different 

commands or expressions may make use of the using-sponsor construct. It has the 

form (using-sponsor expression do commands). 
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All communications transmitted have a sponsor as an acquaintance. By 

default, this sponsor provides the resources for the computation performed upon 

acceptance of the communication. This sponsor can be bound to an identifier when 

matching the communication, then used later in a using-sponsor construct. 

When the construct is evaluated, it evaluates expression, which should denote 

a sponsor. This sponsor is used to provide resources for the evaluation of 

commands in the body of the construct. The using-sponsor construct will relay any 

complaints generated in the evaluation of the expression or of the commands. 

C. 11.4 Comments 

Comments can be inserted anywhere in Act2 code where separators such as 

space characters or other white-space can occur. A comment begins with a semi- 

colon (;) and ends with the next end-of-line character. Any sequence of characters 

can occur between these. 

C.12 Syntactic Extension 

In Act2, user input is read in as list structure and symbols. Whatever is read in 

is asked to parse itself as either an expression or a command, and is provided with 

two special keyword environments. Symbols (and numbers) ignore the 

environments and parse themselves directly, but a list or sequence will scan itself 

from left to right, looking for a symbol which has been declared as a keyword. 

Mechanisms for declaring such keywords will be presented below. 

Each keyword environment associates a symbol with an actor which parses 

sequences. When a list or sequence is asked to parse itself as an expression, it scans 

itself from left to right. Whenever it encounters a symbol, it looks that symbol up in 
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the expression-keyword environment If the symbol is not a ke> word, the scan 

continues. If it is a keyword, the parser to which it is bound is asked to parse the 

sequence. 

Users share common parsing environments for the basic Act2 language 

definition. In addition, each user's environment has private environments for 

personal extensions. These personal environments are bound to the identifiers, 

standard-act2-express1ons and standard-act2-commands. 

The defexpression and defcommand expressions are included in Act2 for 

convenient extension of these personal parsing environments. Syntactic extension is 

meant less for casual users than for language designers embedding new languages in 

Act2. 

C.12.1 DEFEXPRESSION Expression 

The defexpression expression has the form (defexpression symbol exp). 

When asked to evaluate itself, the expression proceeds with the evaluation of exp, 

which should be an expression denoting or creating an actor which will parse a 

sequence identified with the symbol. It then asks the default expression-keyword 

environment to extend itself with a mapping from the symbol to the parser. If any 

unhandled complaints are generated in these attempts, they are relayed as the 

response from the evaluation of the defexpression. 

Here is an example of the use of defexpression to declare a new kind of 

expression with the form (delay expression), which will provide a lazy evaluation 

capability. When evaluated, the delay expression will return immediately with a 

newly created delay actor, without evaluating expression. If and when the delay 

actor is ever sent a communication, the delayed expression will be evaluated, and the 

160 

mammHmm -••-• • .—. 



result will be sent the communication. 

Here we establish the expression keyword, and install an appropriate parser. 

The full implementation of the parser is shown, to illustrate the various messages 

which get passed around. In practice, there would be a set of parameterized parser 

abstractions available, and only a simple instantiation of one of them would be 

required. 
(defexpresslon delay 

(create 
(is-request  (an expression-parse 

(with source =src) 
(with expression-keywords =ek) 
(with command-keywords = ck)) 

do 
(case-for sre 

(1s  ['delay =exp] do 
(reply 

(new delay-expression 
(with arg 

(ask exp (a parse-yourself-as-express1on 
(with expression-keywords ek) 
(with command-keywords ck))))))))))) 

Here is an implementation of an abstract syntax actor abstraction for 

representing delay expressions. 
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(define (new delay-expression (with arg =exp)) 
(create 
(is-request (an expresslon-eval (with environment =env)) do 

(reply 
(create ;; a serializer  representing the evaluated expression. 
(1s-commun1cat1on =com do 

;; 1f 1t ever gets a communication, 
;; we should eval the expression 1n original environment. 
(case-for (ask exp (an expresslon-eval 

(with environment env))) 
(1s rvalue do  ;; 1f the evaluation succeeds: 

(send-to value com) ;; send the communication to ft, and 
;; become the result, so future communications go 
;; directly to 1t. 
(become value)) 

(complaint treason do ;; 1f the evaluation falls: 
(complain reason)        ;; relay the complaint, and 
;; become something that will complain 1n the same way 
;; to any further communications, 
(become (create-unser1a11zed 

(1s-commun1cat1on =x do 
(complain reason)))))))))))) 

Here is a simple example of the creation of an expression, 

(prevailing-environment), whose value is the current environment, in which the 

expression itself is evaluated. A single actor serves both as parser and as abstract 

syntax. 
(defexpresslon prevailing-environment 

(label =self 
(create-unserlallzed 
(is-request (an expression-parse) do (reply self)) 
(1s-request (an expresslon-eval 

(with environment =e)) 
do (reply e))))) 

C.12.2 DEFCOMMAND Expression 

The dcfcommand expression is identical to the defexpression expression, 

except that it establishes a new command keyword, rather than a new expression 

keyword. 
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Appendix D 

A Meta-Circular Description of Act2 

This appendix contains a meta-circular description of Act2. It consists of Act2 

implementations of abstract syntax objects representing the expressions and 

commands in Act2. Our preliminary Scripter implementation of Act2 was very 

closely patterned after this description. 

To save typing space, an expression of the form (evaluate exp env) was 

introduced. It means exactly the same as 

(ask exp (an expresslon-eval  (with environment env))). 

This description relies on some aspects of Act2 which increase the conciseness 

of the code. For example, the evaluation of an expression will directly relay a 

complaint in the evaluation of one of its sub-expressions. Unhandled 

communications will result in a complaint. These and similar cases are explicitly 

included in the Scripter implementation. 

D.l Primitive Actors 

Primitive actors are implemented in cooperation with the underlying apiary. 

They are represented directly as the corresponding Lisp objects. Primitive scripts 

are associated with each category of primitive actors. Their meta-circular 

descriptions are simply a high-level representation of their behavior. 

Numbers include integers and reals, both positive and negative. They are 

represented by Lisp fixnums, flonums, and bignums. 
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(define (now number-expression (with value =v)) 
(label self 
(create-unser 1alIzed 
(1s-request (an expresslon-eval) do (reply v)) 
(is-request (a match (with bindings =b) (with object =o)) do 

(case-for o 
(Is self do (reply (a successful-match (with bindings b)))) 
(otherwise (1s something do (reply (a falled-match)))))) 

(1s-request (a zerop) do (reply (= v 0))) 
;; similarly: plusp minusp oddp minus abs 1+ 1- fix float 
(1s-request (a + (with operand =x)) do (reply (+ x v))) 
;; similarly: •>>*<<* max mln - • // remainder gcd 

Symbols serve as keywords and identifiers in Act2. In the underlying 

implementation, T also represents the logical value of truth, and NIL represents the 

logical value of falsity, NIL also serves as an empty list. 
(define (new symbol-expression  (with symbol =s)) 
(label self 
(create-unser1al1zed 
(1s-request (an expresslon-eval (with environment =env)) do 

(reply (ask env (a lookup (with symbol s))))) 
(is-request (an Install (with creation-expression see) 

(with environment = env))      do 
(case-for (ask ce (an expresslon-eval (with environment env))) 

(1s =v do 
(reply (ask env (a grow (with symbol s) (with value v))))))) 

A sequence represents an ordered collection of actors. It can be used as a 

pattern, with bind-expressions for elements. By default, sequences are represented 

as Lisp lists. 
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(define (new sequence  (with first =f) (with rest =r)) 
(create-unserlallzed 
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do 

(reply (new sequence (with first (ask f aval)) 
(with rest (ask r eval))))) 

(1s-request (a first) do (reply f)) 
(is-request (a rest) do (reply r)) 
(is-request (a length) do (reply (+ 1 (ask r (a length))))) 
(is-request (a match (with bindings =b) (with object =o)) do 

(case-for o 
(1s (a sequence (with first =ol) (with rest sor)) do 

(case-for (ask f (a match (with bindings b) (with object ol))) 
(1s (a successful-match (with bindings =b)) do 

(reply (ask r (a match (with bindings b) 
(with object or))))) 

(otherwise (1s something do (reply (a falled-match))) 
(complaint something do (reply (a falled-match)))))) 

(otherwise (1s something do (reply (a falled-match)))))) 

D.2 Simple Expressions 

The quote expression simply prevents the parsing and evaluation of an 

expression. 
;;  expression:  (quote expression) 
(define (new quote-expression (with source =s)) 
(create-unserlallzed 
(is-request  (an expresslon-eval) do (reply s)) 

The ask expression represents the sending of a request to some target, and the 

receipt of a response. It looks to the programmer like a two-way communication 

exchange. 
; expression (ask target message) 
(define (new ask-expression 

(with target st) 
(with message HB)) 

(create-unseHal 1zed 
(Is-request (=eval wh1ch-1s  (an expresslon-eval))  do 

(reply (ask (ask t eval) (ask m eval)))) 
...)) 

A convenient expressional notation is provided for primitive operations, such 

as addition, subtraction, and conjunction. A simple protocol is used, so these 
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operations arc all represented with the same ae abstract syntax object. 
;  expression:  (+ 1 2) (1 + 2)   ... 
(define (new binmy-operutor 

(with operator =op) 
(with lhs = left) 
(with rhs = r1ght)) 

(create-unseHallzed 
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do 

(reply (ask (ask  left eval) 
(an op (with operand (ask right eval)))))) 

...» 

The delay expression provides the ability to perform lazy evaluation on 

demand. 
(define (new delay-expression 

(with expression =exp)) 
(create-unser1a11zed 

(1s-request (=eval wh1ch-1s (an expresslon-eval)) do 
(reply 

(create 
(i*-communication = com do 

(case-for (ask exp eval) 
(1s =va1ue do 

(send-to value com) 
(become value)) 

(complaint =msg do 
(complain msg) 
(become 

(create-unser1al1zed 
(1s-comimin1cat1on something do 

(complain msg)))))))))))) 

D.3 Variable Binding 

Act2 has a few special expressions for use as patterns. One is for binding an 

identifier to the corresponding actor in the object of the match. Others put 

restrictions on the actors which can be bound. 

The bind expression is used as a pattern, to bind an identifier to the actor it is 

supposed to match. If the identifier has not been bound during the match, or if it 

has been bound to the same actor as the one being matched, the match succeeds. 

Otherwise, the match must fail. 
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"(bind x)" 
(define (new bind-cxpression  (with symbol = s)) 
(label self 
(create-unser 1 all zed 
(1s-request (an expresslon-eval) do (reply self)) 
(is-request (a match (with bindings = b) (with object - o)) do 
(case-for (ask b (a lookup (with symbol s))) 

(complaint =m do 
(reply (a successful-match 

(with bindings 
(ask B (a grow 

(with symbol s) 
(with value o))))))) 

(1s =v do (case-for o 
(same v do (reply (a successful-match (with bindings b)))) 
(otherwise do (reply (a falled-match))))))) 

The which-is expression is usually used to place restrictions on what a bind 

expression can match. Essentially, the which-is expression is a binary conjunction 

operator for descriptions. 
; expression: "(wh1ch-1s =x PATTERN)" 
(define (new wflkh-is-expression  (with lhs =1) (with rhs sr)) 

(create-unserlallzed 
(1s-request ( = whlch-ls (an  expresslon-eval)) do 

(reply (new wh1ch-1s-express1on (with lhs (ask 1 eval)) 
(with rhs (ask r eval))))) 

(Is-request (a match (with bindings sb) (with object so)) do 
(case-for (ask 1 (a match (with bindings b) (with object o))) 

(1s (a successful-match (with bindings sbl)) do 
(reply (ask r (a match (with bindings bl) (with object o))))) 

(otherwise (1s something do (reply (a falled-match)))))) 

The sucht hat expression provides another way to filter a pattern-match. It 

provides a description to match, as usual. It also provides a predicate which decides 

whether or not to let the match succeed after the match with the description has 

succeeded. 
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(define (new suc/ithat-expression 
(with description sd) 
(with predicate =p)) 

(create-unserial1zed 
(1s-request (=eval wh1ch-1s (an expresslon-eval 

(with environment =env))) do 
(let ((=desc match (ask d aval))) do 

(create-unserial 1zed 
(1s-request (smsg wh1ch-1s (a match 

(with bindings =b) 
(with object =o)))   do 

(case-for (ask desc msg) 
(1s (a falled-match) do (reply (a falled-match))) 
(1s (-result wh1ch-1s (a successful-match 

(with bindings =b))) do 
(1f (evaluate p (new environment 

(with primary b) 
(with secondary env))) 

(then do (reply result)) 
(else do (reply (a falled-match)))))))))))) 

D.4 Abstraction 

Act2 has a single abstraction mechanism. There are two aspects of the 

abstraction mechanism: definition of an abstraction and instantiation. 

i 

The define expression is for defining a new abstraction. The expression 

contains a template (or "pattern") characterizing a set of new expressions, and 

another expression which denotes a meaning for those new expressions. 
; expression:  (define ereaiion-template abstracted-expression) 
(define (new define-expression 

(with creation-template st) 
(with abstracted-expression =ce)) 

(create-unserial1zed 
(Is-request (an expresslon-eval   (with environment =«))  do 

(reply (ask t (an Install 
(with expression ce) 
(with environment e)))) 

The new expression is for instantiating abstractions. 
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(define (new new-expression 
(with concept =c) 
(with attribute-sequence =as)) 

(create-unseHallzed 
(is-request (an Install (with expression =ce) 

(with environment sej)        do 
(case-for (ask e (a lookup (with symbol c))) 

(1s ( = ad wh1ch-1s (an atomic-description)) do 
(reply (ask ad (an 1nsta1l-1mplementat1on 

(with environment e) 
(with expression ce) 
(with pattern 

(evaluate (new Instance-description 
(with concept c) 
(with attribute-sequence as)) 

e)))))))) 
(1s-request (=eval wh1ch-1s (an expression-aval)) do 

(case-for (ask c aval) 
(1s ( = ad wh1ch-1s (an atomic-description)) do 
(case-for (ask ad (a summar1ze-1mplementat1on)) 

(1s (an installation (with environment sei) 
(with expression seel) 
(with pattern =cpl))   do 

(let ((=state match 
;; There's actually a bit more to 1t than this, 
(ask (new Instance-description 

(with concept c) 
(with attribute-sequence as)) 

aval))) 
do 
(case-for (ask cpl (a match 

(with bindings (new empty-layer)) 
(with object state))) 

(1s (a successful-match (with bindings =b)) do 
(reply (ask eel 

(an expression-aval 
(with environment 

(new environment 
(with primary b) 
(with secondary el))) 

(with pattern cpl) 
(with state state)))))))))))) 
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D.5 I'Alcndinj» Listener's I'nviroiiment 

The (lefname expression is used to associate a name with the result of 

evaluating an expression, at the top level listener. 
(define (new defname-expression 

(with symbol ssyro) 
(with expression sexp)) 

(create-unserlal1zed 
(1s-request (=eva1 wh1ch-1s  (an expression-aval 

(with environment     e))) do 
(reply (ask e (a grow 

(with symbol sym) 
(with value (ask exp eval)))))))) 

The dcfconcept expression is for extending the prevailing environment with a 

new concept. It is meant to be used at top level, from a listen-loop. 
(define (new de)Concept-expression (with symbol =s)) 
(label self 
(create-unserlallzed 
(1s-request (a expresslon-eval  (with environment =e)) do 

(let ((something match 
(ask e (a grow 

(with symbol s) 
(with value (new concept (with name $))))))) do 

(reply s)))))) 

D.6 Creating Instanee Descriptions 

An a or an expression represents the creation of an instance description. Its 

evaluation involves the evaluation of the concept and attribute fillers, followed by 

the creation of an instance description. 
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; expression "(an automobile (with color red))" 
(define (new a-exprcssion 

(with concept —c) 
(with attribute-sequence sas)) 

(label self 
(create-unseHal 1zed 
(1s-request (=eval wh1ch-1s (an expresslon-eval)) do 
(reply (new Instance-description 

(with concept (ask c eval)) 
(with attribute-sequence 

(new eval-attrlbute-sequence 
(with attribute-sequence as) 
(with eval-message eval)))))) 

This abstraction evaluates a sequence of attributes from an a-expression, for 

creating an instance description. 
(define (new eval-attribute-sequence 

(with attribute-sequence = as) 
(with eval-message =eval)) 

(case-for as 
(1s [] do (reply [])) 
(1s (a sequence (with first =f)  (with rest =r))  do 

(reply (a sequence 
(with first (new eval-attribute 

(with attribute f) 
(with eval-message eval))) 

(with rest (new eval-attrlbute-sequence 
(with attribute-sequence r) 
(with eval-message eval)))))))) 

This abstraction evaluates a single attribute. An attribute is represented as a 

sequence of three elements: the kind, the relation, and the filler. It is evaluated by 

evaluating its filler. 
(define (new eval-attribute 

(with attribute =a) 
(with eval-message =eval)) 

(case-for a 
(1s [ = kind =relat1on =f11ler] do 

(reply [kind relation (ask filler eval)])))) 
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D.7 Creating Actors 

The create expression is for creating actors with specified behaviors. Here, we 

give a single implementation, of serializers. An implementation of create- 

unserialized would be almost identical. Expressions for creating actors whose 

internals arc visible for pattern-matching also have a very similar implementation. 
(define (new crcate-expression 

(with handler-group; =hgs)) 
(create-unseHal 1zed 

(•is-request ( = eval  wh1ch-1s 
(an expresslon-eval   (with environment =e))) do 

(reply 
(new ser1al1zer 

(with environment e) 
(with descriptor 

(case-for eval 
(1s (an expresslon-eva? (with pattern =p)) do 

(reply (ask p (a make-descriptor (with environment e))))) 
(otherwise (1s something do (reply (a something)))))) 

(with state 
(case-for eval 

(1s (an expresslon-eval (with state =s)) do 
(reply s)) 

(otherwise (Is something do (reply (a something)))))) 
(with behavior 

(new ser1al1zer-behav1or 
(with handler-groups 

(new eval-handler-group-patterns 
(with handler-groups hgs) 
(with environment •)))))))) 

...)) 

This abstraction ripples down the groups of communication handlers in a 

create expression, calling on cval-handler-sequence-patterns to evaluate the patterns. 

The structure of a create expression is similar to the structure of case-for and one-of 

constructs. Communication handler groups are represented as a sequence of 

handler groups. A handler group is represented as a sequence of handlers. A 

handler is represented as a sequence containing three elements: a keyword 

indicating the significance of the pattern, a pattern, and a sequence of commands 

comprising the body. 
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(define (new evahhandler-group-pattcrns 
(with handler-groups shgs) 
(with environment se)) 

(case-for hs 
(1s [] do (reply [])) 
(Is  (a sequence (with first  =f) (with rest =r)) do 

(reply (a sequence 
(with first (new eval-handler-sequence-patterns 

(with handler-sequence f) 
(with environment e))) 

(with rest (new eval-handler-group-patterns 
(with handler-groups r) 
(with environment e)))))))) 

This abstraction ripples down a sequence of communication handlers, 

evaluating the patterns. 
(define (new eval-handler-sequence-patterns 

(with handler-sequence =hs) 
(with environment =e)) 

(case-for hs 
(1s [] do (reply [])) 
(Is (a sequence 

(with first [=keyword ^pattern = bodyJ) 
(with rest =r)) 

do 
(reply (new sequence 

(with first [keyword (evaluate pattern e)  body]) 
(with rest (new eval-handler-sequence-patterns 

(with handler-sequence r) 
(with environment a)))))))) 

D.8 Simple Commands 

The become command designates a replacement for an actor, and causes the 

actor to become indistinguishable from its replacement 
; command: "(become ...)" 
(define (new become-command  (with replacement-actor =r)) 
(create-unser1allzed 
(1s-request (a command-aval 

(with environment  a) 
(with state =s))     do 

(reply (a become-effect 
(with replacement-actor 

(ask r (an expresslon-eval 
(with environment e) 
(with default s))))))) 

...» 
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The send-to command causes a communication to be sent to some target. The 

reply-to and complain-to commands are implemented in a very similar manner. 
command: "(send-to T C)". "(reply-to T M)", "(compla1n-to T M)H 

nd (with target (define (new send-to-conwia 
(create-unserlallzed 
(1s-request (a command-aval (with environment =e)) do 

(case-for (evaluate t e) 
(1s = target do 
(case-for (evaluate c e) 

(1s = com do 
(send-to target com) 
(reply (a completed-command-effect))) 

(complaint =m do 
(compla1n-to target m) 
(reply (a completed-command-effect))))))) 

...)) 

t) (with communication =c)) 

The send command causes a reply to be sent to some default customer or a 

complaint to be sent to some default complaint-department. The reply and 

complain commands are implemented in a similar manner. 
; command:  "(send ...)".  "(reply  ...)",  "(complain  ...)" 
(define (new send-comntand (with communication scorn)) 
(create-unserlallzed 
(1s-request (a command-eval 

(with environment se) 
(with communication =c)) do 

(case-for c 
(1s  (a request 

(with customer scut) 
(with complaint-department =cd))  do 

(case-for (evaluate com e) 
(1s  ( = r wh1ch-1s (a reply)) do 

(reply (a send-effect 
(with communication r) 
(with target cus)))) 

(1s  ( = r wh1ch-1s (a complaint)) do 
(reply (a send-effect 

(with communication r) 
(with target cd)))))))) 
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0.9 Composite Constructs 

D.9.1 Case-for Construct 

The case-for construct dispatches on the response from the evaluation of an 

expression. It can have several groups of handlers for the response. They are 

represented as a sequence of sequences of handlers. A handler is represented as a 

sequence with three elements: a keyword [1s or complaint], a pattern, and a 

command sequence comprising the body. 
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(define (new COSe-fofconstruct  (with test-expression = te) 
(with handler-groups = hgs)) 

(create-unserlalIzed 
(is-request (a command-eval 

(with environment = e) 
(with communication =c) 
(with state =s)) do 

(case-for (new f1nd-case-for-body-from-expr (with test-expression te) 
(with handler-groups hgs) 
(with environment a)) 

(1s (a found-case-for-body (with body 3b) (with environment =e)) do 
(reply (new eval-command-sequence (with command-sequence b) 

(with environment e) 
(with communication c) 
(with state s)))) 

(1s (a could-not-f1nd) do 
(case-for c 

(1s (a complaint) do (send c)) 
(1s (a reply) do 

(complain (an unmatched-reply (with reply c)))))))) 
(1s-commun1cation (=com whlch-ls 

(a request 
(with message 

(an expresslon-eval 
(with environment =e))))) do 

(case-for (new f1nd-case-for-body-frcm-expr (with test-expression te) 
(with handler-groups hgs) 
(with environment e)) 

(1s (a found-case-for-body (with body =b) (with environment = e)) do 
(reply (new eva1-expres$1on-body 

(with command-sequence b) 
(with environment e) 
(with communication com) 
(with state (ask com (a descriptor)))))) 

(complaint (a could-not-find (with communication Be)) do 
(case-for c 

(1s (a complaint) do (send c)) 
(Is (a reply) do 

(complain (an ummatched-reply (with reply c)))))))) 
.)) 

This abstraction evaluates the test expression in the case-for construct, then 

sets up find-case-for-body to do the rest of the work. 
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(define (new fiiul-case-forhody-from-expr 
(with test-expression    ste) 
(with handler-groups shgs) 
(with environment =env)) 

(case-for (evaluate te env) 
(1s =v do 

(reply (new f1nd-case-for-body 
(with keyword Ms) 
(with message v) 
(with handler-groups hgs) 
(with environment env)))) 

(complaint ~m do 
(reply (new f1nd-case-for-body 

(with keyword 'complaint) 
(with message m) 
(with handler-groups hgs) 
(with environment env)))))) 

This abstraction ripples down the sequence of handler groups, sequentially 

trying each for a match. Each handler group corresponds to a set of handlers nested 

in an otherwise clause. 
; for each handler 1n  'hs: aval pattern, try to match,  return body and env. 
(define (new find-case-forbody 

(with keyword =k) 
(with message =m) 
(«1th handler-groups shgs) 
(with environment =env)) 

(case-for hgs 
(1s [] do (reply (a could-not-f1nd))) 
(1s (a sequence (with first —f) (with rest =r)) do 

(case-for (new f1nd-case-for-body-l 
(with keyword k) 
(with message m) 
(with handler-sequence f) 
(with environment env)) 

(1s =x do (reply x)) 
(Is (a could-not-f1nd) do 

(reply (new f1nd-case-for-body 
(with keyword k) 
(with message m) 
(with handler-groups r) 
(with environment env)))))))) 

This abstraction ripples down a handler group [a sequence of handlers], 

looking for a matching handler. Specifications state that these patterns are checked 

concurrently. This can be achieved in a concrete implementation by eagerly 

evaluating recursive calls of this abstraction. 
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(define (new find-cast'-jor-body-I 
(with keyword = k) 
(with message =m) 
(with handler-sequence =hs) 
(with environment =env)) 

(case-for hs 
(1s [] do (reply (a could-not-f1nd))) 
(Is (a sequence 

(with first [=keyword =pattern =body]) 
(with rest =r)) do 

(1f (= keyword k) 
(then do 
(case-for (ask (evaluate pattern env) 

(a match 
(with bindings (new empty-layer)) 
(with object m))) 

(1s (a successful-match (with bindings =b1n)) do 
(reply (a found-case-for-body 

(with body bod) 
(with environment 

(new environment 
(with primary bin) 
(with secondary env)))))) 

(1s (a falled-match) do 
(reply (new f1nd-case-for-body-l 

(with keyword k) 
(with message m) 
(with handler-sequence r) 
(with environment env)))))) 

(else do 
(reply (new f1nd-case-for-body-l 

(with keyword k) 
(with message m) 
(with handler-sequence r) 
(with environment env))))) 

D.9.2 0ne-of Construct 

The one-of construct is a very flexible and general construct for making 

decisions based on Boolean predicates. It is similar in structure to the case-for and 

create expressions. It is represented as a sequence of arm groups, each of which is a 

sequence of arms. The arm groups are tried sequentially, looking for one whose 

predicate yields truth. The arms in each arm group are specified as being tried 

concurrently. Each arm consists of a predicate and a command sequence which 

serves as the body. 
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(define (new onc-of-construct  (with arm-groups = ags)) 
(label self 
(create-unserlal 1zed 
(is-raquest (a command-eval 

(with environment =e) 
(with communication =c) 
(with state =s))      do 

(reply (new eval-command-sequence 
(with command-sequence 

(new f1nd-one-of-body (with arm-groups ags) 
(with environment e))) 

(with environment e) 
(with communication c) 
(with state s)))) 
ton 
•is 
(with message 

(an expresslon-eval (with environment =e))))) 

(1s-commun1cat 
(scorn which 
(a request 

do 
(reply (new 

))) 

eval-express Ion-body 
(with command-sequence 

(new f1nd-one-of-body 
(with arm-groups ags) 
(with environment e))) 

(with environment e) 
(with communication com) 
(with state (ask com (a descriptor)))))) 

This abstraction ripples sequentially down the sequence of handler groups, 

calling find-one-of-body-1 on each group, until a body is found. 
(define (new find-one-of-body 

(with arm-groups =ags) 
(with environment senv)) 

(case-for as 
(1s [] do (complain (a not-found))) 
(1s (a sequence (with first  St)  (with rest =r)) do 

(case-for (new f1nd-one-of-body-l 
(with arm-sequence f) 
(with environment env)) 

(1s =b do (reply b)) 
(complaint (a not-found)  do 

(reply (new f1nd-one-of-body 
(with arm-groups r) 
(with environment env)))))))) 

This abstraction ripples down an arm group, which is represented as a 

sequence of arms, looking for an arm whose predicate yields truth. An arm is 

represented by a sequence with two elements: a predicate and a command 
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sequence. 
(define (new find-one-of-body-1 

(with arm-sequence =as) 
(with environment =env)) 

(case-for as 
(1s [] do (complain (a not-found))) 
(1s (a sequence 

(with first [^predicate =body]) 
(with rest =r)) do 

(1f (evaluate predicate env) 
(then do (reply body)) 
(else do (reply (new f1nd-one-of-body-l 

(with arm-sequence r) 
(with environment env)))))))) 

D.9.3 Let Construct 

The let construct provides a general way to perform a number of pattern- 

matches, then evaluate some commands using any bindings which resulted in the 

matches. A degenerate, but very useful, case of this is simply binding an identifier 

to the result of an expression. The group of matchers in a let construct are 

represented as a sequence of matchers. Each matcher is represented as a sequence 

containing two elements: a pattern for the match and an object for the match. 
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(define (new k't'Cüllstruct 
(with matcher-sequence ütj 
(with body =b)) 

(label self 
(create-unseHallzed 
(1s-request (a command-eval 

(with environment =e) 
(with communication ~c) 
(with state = s))      do 

(reply (new eval-command-sequence 
(with command-sequence b) 
(with environment 

(new environment 
(with primary 

(new process-matcher-sequence 
(with matcher-sequence ms) 
(with bindings (new empty-layer)) 
(with environment e))) 

(with secondary e))} 
(with communication c) 
(with state s)))))) 

(1s-commun1cat1on 
(scorn wh1ch-1$ 
(a request (with message 

(an expresslon-eval (with environment =e))))) 
do 
(reply (new eval-expresslon-body 

(with command-sequence b) 
(with environment 

(with primary 
(new process-matcher-sequence 

(with matcher-sequence ms) 
(with bindings (new empty-layer)) 
(with environment e))) 

(with secondary e)) 
(with communication com) 
(with state (ask com (a descriptor)))))))) 

This abstraction ripples down the sequence of matchers, performing each 

match. If successful, it replies with a layer of bindings established during the 

matching. 
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(define (new pivccss-nuitcher-sequence 
(with matcher-sequence =ms) 
(with bindings =b) 
(with environment =env)) 

(case-for ms 
(1s [] do (reply b))) 
(1s (a sequence 

(with first [^pattern =object]) 
(with rest =r)) do 

(case-for (ask (evaluate pattern env) 
(a match 

(with bindings b) 
(with object (evaluate object env)))) 

(1s (a falled-match) do (complain (a cannot-match))) 
(1s (a successful-match (with bindings =b)) do 

(reply (new process-matcher-sequence 
(with matcher-sequence r) 
(with bindings b) 
(with environment env))))))) 

D.9.4 Other Constructs 

The if construct can be implemented as a syntactic extension of Act2, or can 

be implemented in a way similar to the implementation of one-of. An if construct of 

the form 

(1f predicate 
(then do then-commands) 
(else do else-commands)) 

has the same meaning as a one-of construct of the form 
(one-of 

(1f predicate do then-commands) 
(otherwise (1f true do else-commands))) 

The label expression can also be implemented either directly, or as a syntactic 

extension. A label expression of the form (label symbol expression) has the same 

meaning as a let expression of the form 

(let ((=symbol match (delay expression))) do 
(reply symbol)) 

Notice the presence of the delay expression, to postpone the evaluation of the 

expression. This is necessary, since the expression can refer to its own value. 
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D.lü Subsidiary Abstractions 

D.10.1 Environments and Layers 

Environments are composed oflayers. The top layer of each environment can 

be grown with new bindings of symbols to values. Therefore, environments are 

serialized. Layers are unserialized, for speed. The top layer of an environment is 

called its primary layer. Each environment also has a secondary environment. 

(define (new environment 
(with primary =pe) 
(with secondary = se)) 

(create 
(is-request (a grow (with symbol  38)  (with value =v))  do 

(let ((sx match (new environment 
(with primary 

(ask pe (a grow 
(with symbol s) 
(with value v)))) 

(with secondary = se)))) 
do (become x) (reply x))) 

(Is-request (a lookup (with symbol =s)) do 
(case-for (ask pe (a lookup (with symbol s))) 

(1s :value do (reply value)) 
(complaint =message do 

(reply (ask se (a lookup (with symbol s))))))) 
(Is-request (=msg wh1ch-1s (a present (with symbol ••))) do 

(reply (or (ask pe msg) (ask se msg)))) 
...)) 

In order to implement layers, we need to implement empty layers which 

accept the same communications as layers and environments. An empty layer has 

no bindings, and replies with a layer when asked to grow. 
(define (new empty-layer) 
(label self 
(create-unseHal 1zed 

(1s-request (a grow (with symbol  ••) (with value =v))do 
(reply (new layer 

(with symbol a) 
(with value v) 
(with next self)))) 

(1s-request (a lookup (with  symbol      s)) do 
(complain  (a missing-binding  (with  symbol   s)))) 

(is-request (a present) do (reply false)) 
•••))) 
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A layer is an unserialized collection of bindings of symbols to values. It can be 

implemented as a recursive data structure, as shown here. 
(define (new layer 

(with symbol  = s) 
(with value =v) 
(with next =n)) 

(label self 
(create-unseHallzed 

(1s-request (=msg wh1ch-1s (a lookup (with symbol = sym))) do 
(1f (» s sym) 

(then do (reply v)) 
(else do (reply (ask n msg))))) 

(1s-request (=msg wh1ch-1s (a present (with symbol  = sym))) do 
(1f (• s sym) 

(then do (reply true)) 
(else do (reply (ask n msg))))) 

(is-request (a grow (with symbol  = sym)  (with value =val)) do 
(reply (new layer 

(with symbol sym) 
(with value val) 
(with next self)))) 

•••))) 

D.10.2 Atomic Descriptions 

The friendly interface to atomic descriptions is through the concept 

abstraction. It allows a programmer to create an atomic description by providing 

only its name. 
(define (new concept  (with name sn)) 
(reply 
(new atomic-description 

(with name n) 
(with encryption-Id (new encryption-Id)) 
(with description-stuff (new description-stuff)) 
(with Implementation-stuff (new Implementation-stuff)) 
(with creation-stuff (new creation-stuff))))) 

The full detail of atomic descriptions is managed by the atomic-description 

abstraction. Each atomic description has a name, which is a symbol used mostly for 

identification by humans, as well as an encryption-id, which is a unique 

discriminator used to distinguish between independently-created atomic 

descriptions. In addition, atomic descriptions have room for installing description- 
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lattice information (description-stuff), for installing implementation information 

(implementation-stuff), and for aiding in bottoming out instance descriptions 

(creation-stuff). The details of the latter are not important for this level of 

description. The atomic description itself is unserialized, but has some serialized 

acquaintances, such as implementation-stuff. 
(define (new atomic-description 

(with name = nam) 
(with encryption-Id =e1d) 
(with description-stuff =des) 
(with Implementation-stuff = 1mp) 
(with creation-stuff =cre)) 

(label self 
(create-unserlal1zed 
(1s-request (a match (with object =o)  (with bindings =b)) do 

; eventually match will be done with a low-level  comparison of  'eld. 
;   'eid  1s a unique encryption 1d associated with an atomic 
;descr1pt1on when 1t  Is created with a (defconcept). 

(one-of 
(If (Identical self o) do 

(reply (a successful-match (with bindings b)))) 
;;  should eventually let description-system have a crack at ft. 
(otherwise do (reply (a fal led-match))))) 

(1s-request (a converse-match  ...) do  ...) 
(1s-request (=msg wh1ch-1s 

(an Install-Implementation 
(with environment =e) 
(with creation-pattern =cp) 
(with creation-expression =ce)))    do 

(reply (ask Imp msg))) 
(1s-request (=msg wh1ch-1s (a summar1ze-1mplementat1on)) do 

(reply (ask Imp msg))) 
...)) 

When a define is evaluated, implementation information usually gets installed 

in an atomic description as a result. It is in the implementation acquaintance that 

this information is installed. This actor must be serialized, so redefinitions can 

occur. 
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(define (new implementation 
(with expression =exp) 
(with environment senv) 
(with pattern =pat)) 

(create 
(1s-request (an Instill-Implementation 

(with expression =expl) 
(with environment = envl) 
(with pattern =patl))   do 

(become (new Implementation 
(with expression expl) 
(with environment envl) 
(with pattern patl))) 

(reply (a completion-report))) 
(1s-request (a summar1ze-1mp1ementat1on) do 

(reply (an Installation 
(with expression exp) 
(with environment env) 
(with pattern pat)))) 

The implementation-stuff abstraction is a trivial interface to the 

implementation abstraction. It is used to create an initial, null implementation. This 

implementation simply complains that the abstraction does not yet have an 

implementation. 
(define (new implementation-stuff) 

(new Implementation 
(with expression 

(function 
(let  ((something match 1)) do 

(complain (an unlmplemented-abstractlon))))) 
(with environment (new empty-layer)) 
(with pattern  (a something)))) 

D.10.3 Instance Descriptions 

The instance-description abstraction implements instance descriptions for 

Act2. An instance description is represented as a concept and asequence of 

attributes. Each attribute is represented as a sequence containing three elements: 

the attribute kind, the attribute relation, and the attribute filler. 
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(define (new instance description 
(with concept = c) 
(with attribute-sequence = as)) 

(label self 
(create-unserlalIzed 
(1s-request (a match (with bindings = b) (with object so)) do 

(reply (ask o (a converse-match 
(with pattern (an Instance-description 

(with concept c) 
(with attributes as))) 

(with bindings b))))) 
(1s-request (a converse-match 

(with pattern - 
(an Instance-description 

(with concept sei) 
(with attributes = asl))) 

(with bindings =b)) 
do ;; try to match self with Instance-pattern. 
(1f (Identical c ci) 

(then do 
(reply (new match-attributes 

(with patterns asl) 
(with objects as) 
(with bindings b)))) 

(else do (reply (a falled-match))))) 
(1s-request (a make-descriptor (with environment =e)) do 

(reply (new Instance-description 
(with concept c) 
(with attribute-sequence [])))) 

...))) 

This abstraction matches the attribute-sequences from two instance 

descriptions. 
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(define (new match-atliiblltCS 
(with patterns =ps) 
(with objects = os) 
(with bindings =b)) 

(case-for ps 
(1s [] do (reply (a successful-match (with bindings b)))) 
(is (a sequence 

(with first [=k1nd = relat1on = f11ler]) 
(with rest = res)) 

do ;; try to find a matching attribute in os. 
(case-for (new match-attrlbute-in-sequence 

(with kind kind) 
(with relation relation) 
(with filler filler) 
(with objects os) 
(with bindings b)) 

(1s (a successful-match (with bindings =b)) do 
(reply (new match-attributes 

(with patterns res) 
(with objects os) 
(with bindings b)))) 

(otherwise (1s something do (reply (a failed-match)))))))) 

This abstraction attempts to match a dismantled pattern attribute to an 

attribute in a sequence of object attributes. 
(define (new match-atmbute-in-sequence 

(with kind =k) 
(with relation =r) 
(with filler =f) 
(with objects =os) 
(with bindings =b)) 

(case-for os 
(1s [] do (reply (a failed-match))) 
(1s (a sequence (with first [=kl ==rl =fl]) 

(with rest =res)) 
do ;; try to find a matching attribute 1n os. 
(one-of 
(1f (Identical r rl) do ;; found relation, now try to match filler. 

(reply (ask f (a match (with bindings b) (with object fl))))) 
(otherwise (if true do ;; keep looking for relation, 

(reply (new match-attrlbute-in-sequence 
(with kind k) 
(with relation r) 
(with filler f) 
(with objects res) 
(with bindings b))))))))) 
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D.10.4 SertatLecrs 

This abstraction represents serialized actors. The implementation of 

unserialized actors resembles this. 
(define (new serializer 

(with descriptor =d) 
(with state =s) 
(with behavior =b) 
(with environment see)) 

(label self 
(create 

(1s-commun1cat1on =com do 
(send-to b  (a process-communication 

;;  the  Incoming communication: 
(with communication com) 
;;  the creation environment: 
(with environment ce) 
;;  the actor's "type": 
(with descriptor d) 
;; a description of the actor, Including Internals. 
(with state s) 
;; the actor Itself: 
(with self self))))))) 

environment see) 
descriptor =d) 
state = s) 
self sself)) 

This abstraction represents a serializer's behavior, or script. 
(define (new serializerbehavior 

(with handler-groups =hgs)) 
(create 
(1s-request (a process-communication 

(with communication scorn) 
(with 
(with 
(with 
(with 

do 
(case-for (new eval-matchlng-handler 

(with handler-groups hgs) 
(with descriptor d) 
(with state s) 
(with environment ce) 
(with communication com) 
(with self self)) 

(1s  (a become- effeet,  (with  replacement-actor      ra))  do  (become ra)) 
(otherwise 
(Is something do ) 
(complaint (a no-match)  do 

(complain (a rejected-communication (with communication com))))))))) 

When an actor accepts a communication, it calls this abstraction to find a 
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handler for the communication and evaluate the corresponding body, 
(define (new evahmatching-handler 

(with handler-groups =hgs) 
(with descriptor =d) 
(with state =s) 
(with environment =ce) 
(with communication = com) 
(with self =me)) 

case-for hgs 
(1s [] do 

(reply (new try-default-handler« 
(with descriptor d) 
(with communication com) 
(with state s) 
(with self me)))) 

(1s (a sequence (with first =f) (with rest =r)) do 
(case-for (new f1nd-and-eval-w1nn1ng-hand1er 

(with handler-sequence f) 
(with environment ce) 
(with communication com) 
(with state s)) 

(1s =x do (reply x)) 
(complaint (a no-match) do 

(case-for (new try-default-handlers 
(with descriptor d) 
(with communication com) 
(with state s) 
(with self me)) 

(1s ax do (reply x)) 
(complaint (a no-match) do 

(reply (new eval-match1ng-handler-w1thout-dafau1ts 
(with handler-groups r) 
(with descriptor d) 
(with state s) 
(with environment ce) 
(with communication com) 
(with self me)))))))))) 

This abstraction implements default handlers for all actors. These handle 

communications such as requests to match, converse-match, and print 
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(define (new Uy-defuult-hundkrs 
(with descriptor =d) 
(with communication =c) 
(with state =s) 
(with self =me)) 

;;  shoild be able to write these as user code, 
(case-for c 

(1s (a request (with message (a match 
(with object =o) 
(with bindings =b))) 

(with customer =cus)) 
do ;; need to be same actor as me for a match, 
(one-of 

(1f (identical me o) do 
(reply-to cus (a successful-match (with bindings b)))) 

(otherwise do (reply-to cus (a falled-match))))) 
(Is (a request 

(with message (wh1ch-1s =m (a converse-match))) 
(with customer =cus)) 

do ;; This match 1s really a type-check, so let descriptor try. 
(reply-to cus (ask d m))) 

(otherwise (1s something do (complain (a no-match)))))) 

This abstraction is similar to eval-matching-handler, but is for those handler 

groups appearing after the first. The difference is that this abstraction will not try 

the default handlers again. 

(define (new eval-matching-handlerwithout-defaults 
(with handler-groups shgs) 
(with descriptor =d) 
(with state =s) 
(with environment =ce) 
(with communication =com) 
(with self =me)) 

(case-for hgs 
(1s [] do (complain (a no-match))) 
(1s (a sequence (with first =f) (with rest =r)) do 

(case-for (new f1nd-and-eval-w1nn1ng-hand1er 
(with handler-sequence f) 
(with environment ce) 
(with communication com) 
(with state a)) 

(1s =x do (reply x)) 
(complaint (a no-match) do 

(reply (new eval-match1ng-hand1er-w1thout-defau1ts 
(with handler-groups r) 
(with descriptor d) 
(with state s) 
(with creation-environment ce) 
(with communication com) 
(with self me)))))))) 
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Ibis abstraction attempts to find and evaluate a handler for the incoming 

communication. It looks for it in a single handler group, which is represented as a 

sequence of handlers. 
(define (new find-and-eval-winning-handler 

(with handler-sequence =hs) 
(with environment =ce) 
(with communication =c) 
(with state =s)) 

(case-for hs 
(1s [] do (complain (a no-match))) 
(is  (a sequence (with first =f) (with rest =r))  do 

(case-for (new match-handler (with handler f) (with communication c)) 
(1s (a successful-match 

(with bindings =b1n) 
(with body =bod)) do 

(reply (new eval-handler-body 
(with state s) 
(with body bod) 
(with communication c) 
(with environment 

(new environment (with primary bin) 
(with secondary ce)))))) 

(1s (a falled-match) do 
(reply (new f1nd-and-eval-w1nn1ng-hand1er 

(with handler-sequence r) 
(with environment ce) 
(with communication c) 
(with state s)))))))) 

This abstraction attempts to match a communication handler with an 

incoming communication. The representation of a communication handler is a 

sequence with three elements, a keyword, a pattern, and a body. 
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(define (new mutch-handler 

(with handler =nan) 
(with communication = com)) 

(case-for nan 
(1s [=key spat -bod] do 

(case-for key 
(1s '1s-commun1cat1on do 

(case-for (ask pat (a match 
(with bindings (new empty-layer)) 
(with object com))) 

(1s (a successful-match (with bindings =b1n)) do 
(reply (a successful-match 

(with bindings bin) 
(with body bod)))) 

(1s (a falled-match) do (complain (a falled-match))))) 
(1s '1s-request do 

(case-for com 
(1s (a request (with message =msg)) do 

(case-for (ask pat (a match 
(with bindings (new empty-1 aye'-)) 
(with object msg))) 

(1s (a successful-match (with bindings =b1n)) do 
(reply (a successful-match 

(with bindings bin) 
(with body bod)))) 

(1s (a falled-match) do (complain (a falled-match))))) 
(otherwise (1s something do (complain (a falled-match)))))) 

(1» 'Is-reply do 
(case-for com 

(1s (a reply (with message —msg)) do 
(case-for (ask pat (a match 

(with bindings (new empty-layer)) 
(with object msg))) 

(1s (a successful-match (with bindings =b1n)) do 
(reply (a successful-match 

(with bindings bin) 
(with body bod)))) 

(1s (a falled-match) do (complain (a falled-match))))) 
(otherwise (1s something do (complain (a falled-match)))))) 

(1s '1s-comp1a1nt do 
(case-for com 

(1s (a complaint (with message =msg)) do 
(case-for (ask pat (a match 

(with bindings (new empty-layer)) 
(with object msg))) 

(1s (a successful-match (with bindings =b1n)) do 
(reply (a successful-match 

(with bindings bin) 
(with body bod)))) 

(Is (a fallod-match) do (complain (a falled-match))))) 
(otherwise (1s something do (complain (a falled-match)))))) 
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D.III.5 EvaluatingComposite Expression Bodies 

When composite constructs such as case-for, one-of, and let are used as 

expressions, die commands in their bodies are evaluated by the eval-expression-body 

abstraction. It calls eval-command-scquence to evaluate the body, then calls 

process-expression-effects to condense the result into a single send-effect. 
(define (new eval-expression-body 

(with command-sequence =cs) 
(with environment =e) 
(with communication =c) 
(with state =s)) 

(case-for (new process-expression-effects 
(with environment e) 
(with effects 

(new eval-command-sequence 
(with command-sequence cs) 
(with environment e) 
(with communication c) 
(with state s)))) 

(1s (a send-effect (with communication com)) do (send com)) 
(otherwise (Is something do (complain (a failure)))))) 

This abstraction processes a sequence of effects from the evaluation of a body 

of commands. It assumes the context is for a construct which has been used as an 

expression. There should be no become-efTect. There should be exactly one 

send-effect. 
(define (new process-expression-effects 

(with effect-sequence =es) 
(with environment =env)) 

(case-for es 
(1s (a send-effect (with communication =c)) do (reply es)) 
(1s (a completed-command-effect) do (reply es)) 
(1s (a become-effect) do (complain es)) 
(1s (a send-effect) do (complain es)) 
(1s [] do (reply [])) 
(1s (a sequence (with first =f)  (with rest =r)) do 

(case-for (new process-expression-effects (with effect-sequence f) 
(with environment env)) 

(1s (a send-effect (with communication =c)) do 
(case-for (new process-expression-effects (with effect-sequence r) 

(with environment env)) 
(1s (a send-effect) do (complain (a failure))) 
(otherwise (1s something do (reply (a send-effect 

(with communication c))))))) 
(otherwise (1s something do (reply (new process-expression-effects 

(with effect-sequence r) 
(with environment env))))))))) 
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1).!().[) Evaluating Communication Handler Ituüios 

The process of evaluating a communication handler body consists of 

evaluating its body. This transforms a sequence of commands into a sequence of 

effects, which we the process with process-handler-effects. 
(define (new eval-handlerbody 

(with state =s) 
(with communication =c) 
(with environment =e) 
(with body sb)) 

(reply (new process-handler-effects 
(with effect-sequence 

(new eval-command-sequence 
(with command-sequence b) 
(with environment e) 
(with communication c) 
(with state s)))))) 

This abstraction processes a sequence of effects from the evaluation of a 

communication handler body. No more than one become-effect should be 

encountered. 
;  'es might be just an effect,  Instead of a sequence of effects, 
(define (new process-handler-effects 

(with effect-sequence =es)) 
(case-for es 

(1s (a completed-command-effect) do (reply es)) 
(1s (a send-effect (with communication scorn)  (with target =tar))  do 

(send-to tar com) 
(reply (a completed-command-effect))) 

(1s (a become-effect (with replacement-actor =n)) do (reply es)) 
(1s [] do (reply (a completed-command-effect))) 
(Is (a sequence (with first =f)  (with rest =r)) do 

(case-for (new process-handler-effects 
(with effect-sequence f)) 

(1s (a become-effect (with replacement-actor = ra)) do 
(case-for (new process-handler-effects 

(with effect-sequence r)) 
(1s (a become-effect) do (complain (a failure))) 
(1s (a completed-command-effect) do 

(reply (a become-effect (with replacement-actor ra)))))) 
(1s  (a completed-command-effect) do 

(reply (new process-handler-effects 
(with effect-sequence r)))))))) 
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D.I(1.7 Evaluating a Command Sequence 

The evaluation of a sequence of commands produces a sequence of effects. 
(define (new eval-command-sequence 

(with command-sequence =cs) 
(with environment =env) 
(with communication =com) 
(with state =s)) 

(case-for cs 
(1s [] do (reply [])) 
(1s (a sequence (with first =f)  (with rest =r)) do 

(reply (new sequence 
(with first (a command-eval 

(with environment env) 
(with communication com) 

/ (with state s))) 
(with rest (new eval-command-sequence 

(with command-sequence r) 
(with environment env) 
(with communication com) 
(with state s)))))))) 
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Appendix E 

Pre-Defined Names, Actors, and Protocols 

When a user first encounters an Act2 listener, there will already be an 

environment associated with the listener. This environment will contain mappings 

from a number of standard identifiers to useful actors. This initial community of 

actors serves as a foundation upon which one can build useful actor communities of 

his own. The following table describes the actors in this standard initial 

environment. It may not be wise to rebind some of these names in your 

environment, or in computations. 

An actor which behaves like a logical value of truth. true 

false An actor which behaves like a logical value of falsity. 

standard-uct2-evaluat'wn-environtncnt 
This is the environment currently associated with the listener. 
The defname expression extends this environment 

standard-act 2 -expressions 
An environment used for parsing. It is a mapping from symbols 
which serve as expression keywords to parsers which can create 
abstract syntax actors from a list-structure representation of the 
expression. The defcxpression expression extends this 
environment 

standard-actl-commands 
An environment used for parsing. It is a mapping from symbols 
which serve as command keywords to parsers which can create 
abstract syntax actors from a list-structure representation of the 
command. The defcommand expression extends this 
environment 
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standard-act2-initial-cvaluation-environment 
An environment containing the pre-defined symbols for Act2. 
This environment may be shared by other users and should not 
be extended. It serves as a secondary environment for 
standard-act2-evaluation-environment, which can be extended at 
will. 

standard-act2-initial-expressions 
An environment containing standard expression keyword/parser 
mappings. It serves as a secondary environment for 
standard-act2-expressions, and might be shared among different 
users. Customizations should be installed by extending 
standard-act2-expressions, and standard-act2-inirial-expressions 
should only be used for reference. 

standard-actl-initial-commands 
An environment containing standard command keyword/parser 
mappings. It serves as a secondary environment for 
standard-act2-commands, and might be shared among different 
users. Customizations should be installed by extending 
standard-act!-commands, and standard-act2-initial-commands 
should only be used for reference. 

In addition, a number of identifiers are bound to atomic descriptions for the 

concepts of each of the instance descriptions used as messages in the standard 

communication protocols described below. These include: abs, addl, are-you, 

attribute, become-effect, command-compile, command-eval, communication, 

compile, complaint, completed-command-effect, concept, concept-for-instance- 

description, converse-match, could-not-find, creation-info, evenp, expression- 

compile, expression-eval, failed-match, failure, found-case-for-body, grow, if, 

install-implementation, installation, lookup, make-descriptor, match, match- 

compile, merge-attributes, minus, minusp, name, oddp, plusp, present, process- 

communication, ready-effect, reply, request, requisition, send-effect, sequence, 

something, successful-match, summarize-implementation, zerop, =,>,> = ,>,<, 

< = ,<,+,-,*,//, and t. 
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E.I Common Protocol for All Actors 

All actors Act2 deals with should handle requests with the following messages. 

Actors created with any variation of the Act2 create expression are provided with 

handlers for these communications, by default 

(a • (»1th operand ...)) 
Reply with a truth value indicating whether or not you and the 
operand are "the same actor". The exact behavior expected 
depends upon whether or not the actors are serialized, and upon 
the sophistication of the actor making the comparison. 

(an are-you (with what ...)) 
Reply with a truth value indicating whether or not you know 
yourself to be an instance of the specified concept. The what is 
often a symbol, as in (an are-you (with what 'sequence)). 

(a match (with object ...) (with bindings  ...)) 
Reply either with (a falled-match) or 
(a successful-match (with bindings  ...)), depending upon 
whether you as a pattern match the object, given the specified 
symbol-to-actor bindings. A successful match might involve 
extending the set of bindings. 

(a converse-match (with pattern  ...)  (with bindings  ...)) 
Reply either with (a falled-match) or 
(a successful-match (with bindings ...)). depending upon 
whether the pattern matches you, given the bindings. 

E.2 Surface Syntax Actors 

Act2 expressions are read in by an Act2 listener as list structure, symbols, and 

numbers. Immediately after reading in such a surface syntax actor, the listener asks 

it to parse itself as an expression. It may, in turn, ask surface syntax actors within 

itself to parse themselves either as expressions or as commands. The result of this 

parsing process is expected to be an abstract syntax actor. 
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(a parse-yourself-as-express1on 

(with expression-keywords ...) 

(with command-keywords ...)) 

Reply with an abstract syntax actor representing the expression 
you denote, otherwise complain. Lists can represent a variety of 
expressions, so they make use of the expression-keywords 
environment. The list will scan itself from left to right, looking 
for a symbol which serves as a keyword. Keywords are symbols 
which are bound to parsers in the expression-keywords 
environment. When it has found a parser, the list asks it to parse 
the list into an abstract syntax actor using the keyword 
environments. Notice that the language can be extended 
syntactically simply by adding new bindings to these keyword 
environments. 

(a parse-yourself-as-command 

(with expression-keywords ...) 

(with command-keywords ...)) 

Reply with an abstract syntax actor representing the command 
you denote, otherwise complain. The parsing process is very 
similar to that for expressions. 

E.3 Parsers 

Parsers in Act2 are used to help parse list structure, as indicated immediately 

above. They accept a list which represents Act2 source code, as well as 

environments in which keywords are bound to parsers. Parsing a list will typically 

involve asking elements in the list to parse themselves either as expressions or as 

commands. 

(an expression-parse 
(with source ...) 
(with expression-keywords ...) 

(with command-keywords ...)) 

If possible, parse the list structure presented as the source into an 
abstract syntax actor representing one of the particular kinds of 
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expressions you were created to purse. If you cannot make sense 
of the list structure, complain with a revealing message. 

(a command-parse 
(with source   ...) 
(with expression-keywords ...) 

(with command-keywords ...)) 
Try to parse the source list structure into an abstract syntax actor 
representing a command. 

E.4 Abstract Syntax Actors 

Abstract syntax actors represent Act2 expressions and/or commands. When 

they are asked to evaluate themselves as such, they perform the actions characteristic 

of the constructs they represent. 

(an expresslon-eval (with environment ...)) 
Evaluate yourself as an expression, resolving names in the 
environment provided. Respond with a reply containing the 
expression value or with a complaint explaining the reason you 
cannot successfully produce such a value. 

(a command-eval 
(with environment ...) 
(with communication ...) 
(with state ...)) 
Evaluate yourself as a command, resolving names in the 
environment provided. You may use the extra context 
information provided in the communication being processed, or 
in a description of the actor in whose communication handlers 
you appear. Respond with an appropriate effect, such as 
(a completed-command-effect), 
(a send-effect (with communication  ...)),or 
(a becoroe-effect (with replacement  ...)), indicating 
what's been done or what remains to be done. 
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V..5 Environments and Layers 

Environments and layers speak with the following protocol. 

(a lookup (with symbol ...)) 
If you contain a binding of the symbol to some actor, reply with 
that actor; if not, complain. 

(a present (with symbol  ...)) 
Reply with a truth value indicating whether or not you contain a 
binding of the symbol to some actor. 

(a grow (with symbol ...) (with value ...)) 
Extend yourself with a binding of the symbol to the value, then 
reply with the resulting environment or layer. Environments are 
serialized and reply with (a changed version of) themselves. 
Layers are unserialized and reply with a new layer. 

E.6 Rock-Bottom Numbers 

Rock-bottom numbers obey the common protocols, the protocols for surface 

syntax actors and for abstract syntax actors, as well as the protocols below. 

(a + (with operand ...)) 
Reply with the number which is the sum of yourself and the 
operand. Other arithmetic operations understood are: 
subtraction (-), multiplication (*), division (//, -*-), 
exponentiation (t), maximization (max), minimization (min). 

(a < (with operand ...)) 
Reply with a truth value indicating whether or not you consider 
yourself "less than" the operand. Other relational operations 
understood are: greater than (>), equality ( = ), greater than or 
equal (> = ,>), less than or equal (< =, <). 

(an are-you (w1t*i what ...)) 
Rock-bottom numbers understand the concepts: ' number, 
'Integer, 'real, 'whole-number,and 'natural-number. 
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F,.7 Symbols 

Primitive symbols obey the common protocols, the protocols for surface 

syntax actors and for abstract syntax actors, as well as the protocols below. The 

special symbol, T, also behaves as the logical truth value representing validity. The 

special symbol, NIL, also behaves as the logical truth value representing falsity, and 

as an empty list or sequence. 

E.8 Sequences and Lists 

Sequences and lists represent linearly-ordered collections of actors. They 

obey the common protocols, the protocols for surface syntax actors and for abstract 

syntax actors, as well as the protocols below. 

(a first) Reply with the first element of the list or sequence. Complain if 
you are an empty list. 

(a rest) Reply with the list or sequence consisting of all elements except 
the first. Complain if you are an empty list. 

(an nth (with number  ...)) 
Reply with the number* element in the list or sequence. 
Complain if there is no such element. 

E.9 Atomic Descriptions 

Atomic descriptions serve as concepts for instance descriptions, and as an 

organizational tool for the Act2 implementation. They obey the common protocols, 

as well as the protocols below. 

(an Install-Implamentation 

(with environment ...) 
(with creation-pattern ...) 
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(with creation-expression ...)) 
Install the implementation information provided in yourself, for 
future reference. Reply with an indication that you have done so. 

(a summar1ze-1mp1ementat1on) 
Reply with a summary of the implementation information 
previously installed within you. Encapsulate that information in 
an instance description of the form: 
(an Installation 

(with expression ...) 
(with environment ...) 
(with pattern ...)) 

(a-concept-for-1nstahce-descr1pt1on) 
Reply with a concept appropriate for an instance description 
being created. The reply contains either yourself or your name, 
depending upon what your creation information indicates. 

(an are-you (with what ...)) 
Recognizes concepts 'atomic-description, 'description, and 
'concept. 

E.10 Instance Descriptions 

Instance descriptions obey the common protocols, as well as the protocols 

below. Expect the set of protocols obeyed by descriptions in general to increase 

when inheritance and deduction mechanisms are embedded in Act2. 

(a make-descriptor (with environment ...)) 
Reply with an instance description which has the same concept as 
you do, but which has no attributions. This is typically used for 
extracting type information for an actor from a description of it, 
which was used in its creation. 

(an are-you (with what ...)) 
Recognizes the concepts 'instance-description and 
'description. 
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Appendix F 

Other Language Issues 

F.l Lexical Scoping 

Act2 implements lexical scoping of free identifiers in abstraction definitions. 

These are conceptually more appropriate for programmers in general [Sussman and 

Steele 75, Church 41, Landin 64]. It has the property of referential transparency. 

That is, if a programmer defines an abstraction with free variables, those free 

identifiers are resolved in the definition environment. There will be no accidental 

name conflicts with code which instantiates the abstraction [Sussman and Steele 75]. 

Lexical scoping and static binding are essential for controlled sharing and 

authentication. They guarantee that the expressions denoting patterns in an 

abstraction definition are evaluated in the definition environment. The atomic 

descriptions used for the concepts will be those in the definition environment. Only 

those atomic descriptions conforming to those will match, so our authentication 

mechanism is preserved. If free identifiers were bound dynamically, as in Lisp, 

these authentication mechanisms would not work. 

F.2 Aliasing 

Act2 realizes the actor computational model, in which actors are independent 

virtual computational agents. Identifiers in Act2 serve as names for denoting actors, 

and not as information containers, such as identifiers in languages such as Fortran. 

A single actor can be referred to with different names in a computation. Modern 

object-oriented languages tend to favor this approach of using identifiers as names. 
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rather than as containers [Liskov, et al 81, Ingalls 78]. 

The notion of sharing fostered by this view of identifiers has further 

implications. There is no need to distinguish between parameter-passing 

techniques. Container-oriented languages have notions of call by reference, call by 

value, etc., which determine the relationship between identifiers used as formal and 

as actual parameters. These typically affect the meaning of assignment within the 

abstraction body. In Act2, identifiers are names, and there are no assignment 

commands, so this problem does not arise. The parameter-passing semantics are 

those of call-by-sharing, as in Clu [Liskov, et al 81]. 

F.3 No Identifier Lifetime Problems 

Act2 has no lifetime, or dangling reference, problems. Actors exist as long as 

they are accessible, so no dangling references can occur. Act2 inherits this property 

from the underlying Apiary architecture, which is responsible for storage 

management. The Apiary performs garbage collections to reclaim storage associated 

with inaccessible actors. This is a major benefit for Act2 programmers, because they 

do not need to be concerned with allocation and deallocation of storage. 

Programmers using languages without garbage collection typically spend a large 

fraction of their time thinking about storage management in their programs. Act2 

programmers are spared from this time-consuming activity. 
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F.4 Context Sensitivity 

Act2 contains several context-sensitive commands and expressions, to increase 

the conciseness, readability, and programmability of the language. Some were 

introduced into the language in order to reduce the verbosity of the language by 

omitting information which is obvious to a reader, or which is available form the 

local context. This also is very convenient for the writer of Act2 code. 

For example, a create expression appearing as an abstraction declaration, such 

as 
(define (new checking-account (with balance =b) (with owner so)) 

(create ...)) 

becomes associated with a description, (a checking-account), which serves as its 

"type". 

The new expression is also context-sensitive. When appearing inside a become 

command with the sole effect of changing some acquaintances, without changing its 

script, it needs only to mention those needing change. For example, 

(become (new checking-account (with balance 60))), when appearing in a 

context such as that above, would be equivalent to 

(become (new checking-account (with balance 60) (with owner Charles))). 

The become command is also context-sensitive in another way. For it to be 

truly context-free, it would have to indicate not only the replacement actor, but also 

the actor to replace, which happens to be the one in whose script the become 

command appears. No more than one become command can be evaluated in 

response to a communication. Also, the become command is context-sensitive in 

the sense that it is not allowed to appear in composite-expression bodies. 

The reply and complain commands are very context sensitive. The target for 
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the reply or complaint communication is left unspecified and must be identified by 

Act2 from context. When appearing as a command in a request-handler context, a 

reply command sends its communication to the customer from the request, 

complaints are sent to the request's complaint department 

When appearing in the body of a composite expression, a reply or complaint 

command designates a reply or complaint to the evaluation of the expression. 

Exactly one must be evaluated in the evaluation of the expression. 

Sponsors, the resource management mechanisms, are usually handled entirely 

by context. Typically, the sponsor contained in the communication being processed 

pays for the processing ofthat communication. None of the constructs explicitly 

mention sponsors, except the using-sponsor construct, which works by affecting the 

context of the commands it contains, and the ls-commun1cat1on variation of 

communication handlers, which allows the programmer to have a pattern which will 

extract the sponsor during a pattern-match. 

F.5 Compilation fits into Interactive Framework 

Act2 treats compilation purely as an optimization technique. The ideal is that 

programmers should not be able to tell the difference between compiled and 

uncompiled code. Separate compilation is supported at the abstraction level. The 

protocol for compilation is, in the case of factorial, 

(ask factorial  (a compile)). 
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